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Transient displacement of laminated plates under combined load based on Mantari s displacement field are
investigated. The solution is implemented under transient mechanical load (sinusoidal, step and triangular sinusoidal
distributed pressures pulse) and thermal buckling for plates with different layer orientation and thickness ratio.
Equations of motion based on higher-order theory are derived through Hamilton's principle, and solved using Navier-
type solution for simply supported laminated plates. The results are presented for many effective parameters such
as the number of laminate and orientation on the dynamic response of plates. Results show the validity of this
displacement field in studying response of laminated thick and thin plates under varied transient loading and design
parameters.

Keywords: transient, thermal, high shear deformation theory, composite plates

1 INTRODUCTION

Engineering structures, such as a submarine, aircraft, spacecraft, automotive, naval, and rockets are normally
exposed to extreme thermal environments and transient loadings, therefore design of plates under static or dynamic
loading, is investigated by many researchers using different solution methods, buckling load of laminated plate
obtained by [1] for different boundary conditions under different thermal and mechanical loading using Classical plate
theory and higher order shear deformation plate theory (HSDT). Transient displacement of laminated plates
subjected to thermal and mechanical loading based on classical plate theory studied by [2], also [3] developed
Mantari displacement to obtain critical temperature of laminated plates.

Vibration response of thin plate under transient thermal load using Wave-Based Method and Unified formulation
developed by [4,5], considering the two theories, Lord-Shulman and Kirchhoff-Love, while [6], derived theoretical
models with typical graded thermal distributions considered using classical plate theory, they added thermal and
acoustic loadings into the equation of motion at the fluid-structure coupling surface. In [7], vibration of laminated
rectangular plate subjected to a hygrothermal environment, analyzed using five theories to derive equations of
motion. Studied response of shell under multi load and boundary conditions in thermal environment using FSDT [8,9],
developed stability of laminated plate with simply supported boundary conditions under thermal load using a higher
order displacement field [10]. Ritz method adopting Classical plate theory, used by [11], to study vibration of laminated
plates under different in-plane compressive loadings, while [12], obtained dynamic response of imperfect functionally
graded (FG) material thick plates subjected to blast and thermal loads with elastic foundations based on higher order
plate theory using two methods Galerkin method and fourth-order Runge—Kutta method also [13], analyzed the
vibration and acoustic behavior of FG reinforced nanocomposite laminated plates under thermo-mechanical loading
using higher order plate theory and Rayleigh integral method while [14], investigated responses of laminated beams
under a moving load with thermal effects, using Ritz theory.

Numerical analysis used by [15], to study the effect of thermal environment on free vibration behavior of laminated
plates developing finite element model based on first order theory also [16], used finite element model to study
dynamic response of functionally graded plates in thermal environment, while [17], studied characteristics of free
vibration and the buckling (mechanical and/or thermal) for laminated composite flat and curved panels numerically
using ANSYS program, also, [18], used a stochastic finite element model to analyze the free and forced vibration
response of the laminated plate under a uniform thermal load. In [19], presented response of a layered annular plate
with damages under static or dynamic thermal model using finite difference and finite element analyses based on
classical theory.

In [20] developed a new finite element model for shells and plates for static and dynamic analysis, also [21] studied
thermomechanical response of shells and plates using finite element model with high-order and first-order shell
theory. Finite element model for vibrations of laminated plate rest on elastic boundary subjected to thermal loading,
established by [22], while in [23] investigated stress and deformation for functionally graded cylinder using Finite
Difference Method based on First-order shear deformation theory. A review of governing equations on properties of
FG materials as well as thermoelastic response of materials provided by [24]. The literature review shows researches,
which analyze the combined problem of thermal buckling, as well as dynamic loading for composite plates, shells
and beams, based on different displacement functions, and solved by many methods such as analytic, approximate
and numerical, which influence the accuracy of results, while response of these structural elements is affected by
many design parameters. Response of laminated thick and thin plates under dynamic and thermal loading is
investigated in present work using Mantari's displacement field for first time.
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2 METHODOLOGY

In present work, Mantari' s displacement field which its aim, is to develop a plate model that its mechanical behavior
close to the three-dimension solutions.

In [25] with ‘m=0.5" value is used to obtain response for laminated plates under transient load and thermal load (as
a ratio of critical thermal temperature), but this displacement is modified by [3], to get critical temperature for these
plates with ‘m=0.05":
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2.1 HAMILTONS PRINCIPLE

The equations of motion are derived using energy method as shown below [26]:
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The virtual strain energy 8U is:
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Substituting Eqgs. (1 and 2) into Eqg. (3) to give:
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Work done by external applied loads 8V is:
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The virtual Kinetic energy 6K is:
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where: (i = 1,2,3,4,5,6)
2.2 EQUATONS OF MOTION

From Eq. (3) five equations of motion are derived as follows:
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Resultant forces are given by:
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where: AT =T — T,.ef.
Where:
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The stress-strain relationship of lamina in a plane stress state is [26]:
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Navier's series for simply supported cross-ply and angle laminates (with a and b dimensions), are given in [26].
2.3 TRANSIENT SOLUTION

Principal mode method is used to calculate response of plate under transient and thermal load, and taking into
consideration orthogonality condition of modes, as follows [27]:
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Generalized forces are determined by making use of the orthogonality condition as:
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Where (Ui fori = 1,2,3,4,5) are the plate modes, while T, is an unknown time function. Subtituting Eq. (7) in
Eqg. (4) results in:

For zero initial conditions, the solution of Eq. (8) is given by [21]:
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Response of plate under a load gy, +) = qof3(xy)F(r) » (M=n=1), can be presented as:
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0
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The force function F (t) for sin, step and triangle pulse respectively are [27]:
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3 RESULTS AND DISCUSSION
3.1 Verification Study

To verify the present model, results of response of laminated plate are compared with [28] for the angle-ply (45°/-
45°) square plate (a = b = 10h). It is obvious that this displacement field is effective to study the dynamic response
and stress components of thick and thin plates under different dynamic load; also, the discrepancy is very small since
[28] used HSDT with different function as shown in Fig. 1.
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Fig. 1. Verification of central displacement for angle plate [+45]

3.2 Results for cross-ply

Forced vibration analysis for cross and angle plates under thermal loading, solution is implemented based on Mantari

function under thermomechanical loading (sinusoidal, step and triangular sinsoidaly distributed pulse) using Matlab

2019b.

Two material model are used:

First model (1): a1=1; 02=3; E1 =172.369 GPa; E2= 6.895 GPa; E3 = E2; p12 =0.25; p13 = 0; p23 = 0; G12=3.448 GPa,

Gi13= Gi12; G23 = 1.379 GPa; p =1603.03 kg/m?.

Second model (2): a1=1; az2= 3; E2= 21GPa; E1 = 25* E2; Ez= E2; p12=0.25; p13= 0; P23 = 0; G12= 0.5* E2; G13= Guz;
Ga23= 0.2* E2; p =8 00 kg/m3.

Fig. 2 shows the response of simply supported anti symmetric cross plates under transient mechanical load with

thermal buckling, from which the transverse displacement component under sin pulse is the largest compared with

step pulse (Tc = 0.03166155 Ce° for two cross ply, noting that Tret. = 0), for sinsoidal load use q = 68.9476 Mpa, a=b,

=0.762, h=0.1524 (m), with material model (1).
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Simply supported with material model (1) symmetric cross plates response is investigated under transient mechanical
load and thermal buckling (ratio of Tc) is plotted in Fig.3, from which the transverse displacement component under
sin pulse is greater than step pulse (increases when ratio of applied Tc increased), while effect of these loads on non

dimensionalized normal stress component (o1) are shown in Fig. 4, also it is noticed that the plate behavior is not
changed.

Fig. 5, shows a comparison for response of simply supported four layers symmetric and anti-symmetric cross plates
under sine and triangle pulse load with thermal buckling, from which the response of anti-symmetric plate is better
than symmetric plate although its Tc is larger indicating that the cross plies are most effective under transverse load
a=b= 0.762; h=0.1524 (m) with material model (1). For sinsoidal load use q = 68.9476 (Mpa); for symmetric layers
Tc =0.009673, and Tc = 0.011433 for anti-symmetric layers, noting that Trer.= 0.

W (m)

W (m)

0.07

Fig. 3. Center deflection for [0/90/90/0] square plate under mechanical pulse and (%Tc)
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Fig. 4. stress for [0/90/90/0] square plate under mechanical pulse and (%Tc)
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Fig. 5. Central deflection for 4 layers cross ply square plate under mechanical pulse and (0.5%Tc)
3.3 Results for angle-ply

Angle plates response is investigated under thermo mechanical loading is plotted in Fig.6 for simply supported [+45],
larger transverse displacement component is under step pulse and increases when ratio of applied Tcr increased,
same behavior is obtained for 4 layers angle plates as shown in Fig. 7, but with smaller magnitudes since stiffness
is better.

Transverse load is g = 1 MN/m? and a=b = 25, h=1 with material model (2) and Tc = 0.0008227 C° for two layers and
Tc =0.001796 Ce for four layers, noting that Tref = O.
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Fig. 7. Center deflection for [45/-45/45/-45] square plate under mechanical pulse and (%Tc)

Response comparison between 2 and 4 layers cross ply and angle ply under thermo-mechanical loading, shown in
Fig. 8 and Fig. 9 respectively, from which it is obvious that response of cross plies better than angle plies although
it's Tc is smaller indicating that the most effective load is transverse mechanical. For [0/90] Tc = 0.000512 and for

[0/90/0/90], Tc = 0.001041, (mechanical properties are same for angle plies).
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Fig. 8. Center deflection for 2layers square plate under mechanical pulse and (0.5%Tc)
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4 CONCLUSIONS

The novelty includes using Mantari function to analyze the dynamic response of angle and cross-ply laminated plates
under uniform temperature distribution. Results show the validity of displacement function in investigating

defor

mation of thick and thin laminated plates under combined (sine, step and triangular pulse) and thermal loading

with changing some design parameters, also the discrepancy is very small when compared with those obtained by
researchers used different functions.
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