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This study investigates the application of real-time Internet of Things (IoT) monitoring and predictive algorithms for 
optimizing liquid palm sugar production. By focusing on the prediction of Brix values, which indicate sugar 
concentration, the research aims to enhance process efficiency and product quality. Traditional manual methods of 
measuring Brix levels are often time-consuming and prone to inaccuracies. To address this, the study integrates IoT-
based sensors that collect data on temperature, pressure, and weight during the evaporation process, using a linear 
regression model to predict Brix values in real time. Experimental results show that weight ratio-based predictions 
align well with manual refractometer readings, particularly in the early stages of production. However, deviations at 
higher Brix levels were noted, prompting the introduction of polynomial regression for improved accuracy. These 
findings suggest that IoT systems combined with predictive models offer a significant advancement in sugar 
production monitoring, reducing manual interventions and enhancing process control. The research contributes to 
the growing body of work on IoT applications in food production, particularly for liquid palm sugar processing, and 
provides a novel approach to addressing current challenges in Brix measurement. 
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1 INTRODUCTION 

The application of real-time Internet of Things (IoT) technologies in food production has gained significant attention 
due to its potential to enhance process monitoring and control also [1], for maintaining quality and safety standards 
in food production [2]. In particular, IoT has been instrumental in continuous monitoring of various production 
processes, enabling producers to maintain product quality and optimize operational efficiency. In the context of sugar 
production, accurate monitoring of Brix value, which indicates the sugar concentration, is crucial for determining the 
quality of the final product. Brix measurements, typically conducted using refractometers or hydrometers, offer real-
time insight into the sugar content, yet they may be limited by manual data collection and delays in processing [3]. 
Recent developments have also highlighted the use of low-cost sensors for real-time monitoring, which can measure 
Brix levels and other parameters like temperature and pressure during production. These advancements align with 
the increasing demand for data-driven solutions that allow for precise monitoring in industries such as the palm sugar 
sector [4]. Furthermore, the nutritional and economic significance of palm sugar, which offers advantages over refined 
sugars, has been well-documented, reinforcing the need for innovative monitoring approaches [5]. 
Despite advances in sensor technology and Brix measurement techniques, traditional methods still face challenges, 
such as residue buildup during production and inconsistencies in sugar content monitoring. These limitations, 
particularly evident in liquid palm sugar processing, affect the accuracy of Brix measurements and, consequently, 
the quality control of the final product [6]. Moreover, conventional monitoring processes often involve manual 
interventions, which can introduce delays and inefficiencies in identifying the optimal time to end the production cycle. 
To address these issues, the integration of IoT monitoring systems with predictive algorithms offers a promising 
solution. Real-time monitoring allows continuous data collection on temperature, pressure, and weight changes 
during the production process, which can be leveraged to predict Brix values. By using weight ratios and linear 
regression models, it becomes possible to predict Brix levels with greater accuracy, reducing reliance on manual 
refractometer readings and improving process efficiency. Real-time monitoring technologies can significantly reduce 
food loss and waste by continuously tracking product conditions [7]. points out that IoT-based food monitoring 
systems can track food conditions in real-time, ensuring compliance with quality standards and minimizing 
environmental impacts associated with food waste [8]. 
Numerous studies have explored the use of IoT technologies for real-time monitoring in agricultural and food 
production settings. For example, [9] Gomes et al.  applied hyperspectral imaging and deep learning techniques to 
predict sugar and pH levels in wine grape berries, demonstrating the feasibility of using machine learning models for 
precise sugar content prediction. Such approaches could be adapted to palm sugar processing to predict Brix values 
using weight ratio and temperature data, optimizing production cycles and improving quality control. 
In the context of palm sugar, the use of advanced IoT systems can significantly enhance process monitoring. Studies 
by [10] Wiyono et al.  have shown that vacuum evaporation and controlled pressure conditions are critical factors 
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influencing the quality and Brix levels of liquid palm sugar. By implementing IoT-based monitoring systems to regulate 
these parameters, producers can achieve higher precision in maintaining product quality. This also supports efforts 
to reduce the processing time, particularly by optimizing temperature and vacuum pressure settings to ensure a 
consistent evaporation rate. 
Furthermore, machine learning models such as linear regression have been successfully applied to predict outcomes 
in various agricultural contexts, providing a foundation for their use in predicting Brix values during liquid palm sugar 
processing [11]. By integrating these models with IoT data, producers can continuously predict and adjust the 
production process, ensuring that the final product meets the desired Brix value. 
While previous research has demonstrated the effectiveness of IoT-based monitoring systems in various agricultural 
and food production processes, few studies have specifically applied these technologies to liquid palm sugar 
processing. Existing studies primarily focus on the measurement of Brix values in raw sugar solutions or the influence 
of processing conditions on sugar content, but there is limited exploration of real-time prediction models for Brix 
values using weight ratios during the production cycle [4]. Furthermore, although machine learning techniques have 
shown promise in predicting sugar content in other contexts, their application in palm sugar production remains 
underexplored. 
Additionally, research on palm sugar processing has largely focused on traditional methods, such as vacuum 
evaporation, without fully integrating real-time monitoring and predictive models into the production process [10]. This 
highlights a gap in the literature regarding the development of more advanced, data-driven approaches to optimize 
Brix measurement and production efficiency in palm sugar processing. Research indicates that the sugar-acid ratio, 
which can be derived from Brix measurements, plays a vital role in determining the flavor profile of sugar products [12].  
The objective of this study is to evaluate the effectiveness of real-time IoT monitoring systems and predictive models 
in optimizing the production of liquid palm sugar. Specifically, the research investigates the use of weight ratios and 
linear regression techniques to predict Brix values during the production process, thereby reducing reliance on 
manual refractometer readings and improving process efficiency. In palm sugar production, understanding the Brix 
value helps in assessing the quality of the sap (nira) collected from palm trees, which is the primary raw material for 
sugar production [13].  This research is novel in its application of IoT technologies and predictive algorithms to palm 
sugar processing, offering a data-driven approach to enhance product quality and operational efficiency. linear 
regression has been effectively utilized to correlate Brix values with other measurable parameters in sugarcane and 
palm sugar processing [11, 14].  By employing linear regression models that incorporate weight ratios of various 
components, producers can enhance the accuracy of Brix predictions, leading to better quality control and product 
consistency [15].  
The scope of the study includes experimental research conducted in Banten Province, Indonesia, focusing on 
monitoring key production parameters such as temperature, pressure, and weight changes. The research aims to 
predict Brix values throughout the production cycle, with the ultimate goal of determining the optimal endpoint for the 
process when the final Brix value is achieved. The integration of real-time IoT monitoring with predictive algorithms 
represents a novel approach in palm sugar production, addressing the current gaps in process optimization and 
quality control. 
The scope of this study includes experimental research conducted in Banten Province, Indonesia, focusing on 
monitoring key production parameters such as temperature, pressure, and weight changes in palm sugar production. 
The specific objective of this research is to predict Brix values throughout the production cycle and determine the 
optimal endpoint when the desired final Brix value is achieved. By explicitly integrating real-time IoT monitoring with 
predictive algorithms, this study aims to optimize the production process and improve quality control, addressing 
existing gaps in process efficiency and consistency. 

2 METHODOLOGY 

The primary materials utilized in this study include raw liquid Arenga pinnata sap, sourced from local suppliers in 
Indonesia. The production process also involves the use of a vacuum evaporator, designed to operate at specific 
pressures and temperatures to minimize nutrient loss due to the Maillard reaction, as indicated by Wiyono et al. (10). 
The experimental setup further incorporates IoT-based sensors, such as a load cell to measure the weight of the 
evaporated liquid, and temperature sensors for real-time monitoring of thermal conditions. The ESP32 microcontroller 
serves as the central processing unit, responsible for data acquisition and transmission to an external spreadsheet, 
facilitating accurate data collection and process control. 
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Fig. 1. Diagram Block of IoT System 

Prior to experimentation, the liquid Arenga pinnata sap was pre-filtered to remove solid particles, ensuring uniform 
consistency for all trials. Each batch of sap was then weighed to ensure a starting mass of 10 kg, as recommended 
by standard industry practices [4]. The samples were subjected to various temperature and vacuum pressure 
conditions, as described in the subsequent experimental setup, to determine the optimal evaporation rate. The venturi 
effect was employed to maintain a consistent vacuum throughout the process. The sap was heated in the vacuum 
evaporator until the mass was reduced to 20% of the original sample, following the approach of [6]. 

 
Fig. 2. Set up experiment 

2.1 Experimental Setup 

The experimental setup, depicted in Figure 2, consists of a vacuum evaporator, an ESP32 microcontroller, and 
sensors for temperature and mass measurements. The vacuum evaporator was calibrated to three temperature 
settings: 60°C, 70°C, and 80°C, with corresponding vacuum pressures of 0.4 bar (-0.6 gauge), 0.3 bar (-0.7 gauge), 
and 0.2 bar (-0.8 gauge) [16]. The data acquisition system was activated when the sap reached its boiling point, 
ensuring uniformity across all trials. Data were continuously collected until the sample mass was reduced by 80%. 
Each temperature and pressure variant were tested to determine the impact on evaporation rate and product quality, 
in alignment with studies on vacuum evaporation techniques [10]. 
The primary parameters measured during the experiments were the temperature, vacuum pressure, and mass of the 
liquid Arenga pinnata sap, with Brix values serving as an indicator of sugar concentration. The temperature sensors, 
integrated with the ESP32 microcontroller, measured the internal temperature of the sap during evaporation, while a 
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load cell captured real-time changes in mass. Additionally, Brix values were periodically measured using a 
refractometer for validation purposes [17]. These parameters were chosen to provide insight into the correlation 
between temperature, pressure, and sugar concentration in the sap, following similar methodologies outlined by Nawi 
et al. [11]. 

2.2 Statistical Analysis 

During processing liquid sugar, two methods for obtaining Brix values, first by using Direct measurement using a 
refractometer, and two predicting Brix values based on the water reduction ratio (weight ratio) during the production 
process. To predict the Brix value, the following basic formula is used:  

𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
1−𝑅𝑅𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤_𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖

    (1) 

 
Where, 
 Bpred     : The predicted Brix value. 
 Binitial    : The initial Brix value. 
 Rwater_reduction : The water reduction ratio during production. 
Arenga sap consists of soluble solids (sugars and non-sugars) and water. As water content decreases due to 
evaporation, the concentration of soluble solids increases. Among the soluble solids, the sugar concentration ranges 
from 13% to 14.5%, while non-sugar components such as protein, minerals, and fats are present in small amounts. 
The protein content in Arenga sap is relatively low, approximately 0.41%, but when calculated based on total dry 
matter, it can reach 0.78%. The ash content, which reflects the mineral content, ranges from 0.04% to 0.28%. The 
fat content is extremely low, approximately 0.02%, and in some samples, it is undetectable. Thus, for initial 
predictions, Equation 1 can be applied. 
However, discrepancies arise between the Brix values measured using a refractometer (9) and those predicted based 
on the weight ratio. To address these differences, linear regression was applied to modify the prediction results for 
improved accuracy. Subsequently, polynomial regression adjustments were introduced, resulting in a refined 
prediction model. 
The equation serves as a more accurate predictive model to determine Brix values during the liquid palm sugar 
production process. The application is as follows: 

a. Monitoring Production Parameters  
Researchers monitor key parameters such as temperature, pressure, and weight throughout the palm sugar 
production process. Weight changes reflect water reduction, which serves as the basis for calculating Brix 
values using the weight ratio. 

b. Calculating Brix Values  
The initial Brix value () is determined at the start of the production process. As water content decreases, Brix 
values are predicted using the basic formula: 

c. Prediction Correction  
Using Regression Models Due to the discrepancies between refractometer measurements and initial 
predictions, polynomial regression is applied to refine the predictions. The polynomial regression model: 
− The Brix by weight ratio is calculated based on water reduction data. 
− This regression model improves the predicted values, aligning them more closely with the actual 

refractometer measurements. 
d. Optimizing the Production  

Endpoint With more accurate Brix predictions, researchers can determine the optimal production endpoint 
when the desired final Brix value is achieved. This enhances efficiency and improves product quality in the 
production of liquid palm sugar. 

The accuracy of these models was assessed using the coefficient of determination (R²) to quantify the strength of 
the relationship between the variables. Additionally, ANOVA tests were conducted to compare the effects of different 
temperature and vacuum pressure combinations on the evaporation rate and sugar concentration. Statistical 
significance was determined at a 95% confidence interval, ensuring the robustness of the results, consistent with the 
methodologies used in previous sensor technology studies [3]. 

3 RESULTS 

Figure 3 illustrates the rate of evaporation during the production process of liquid sugar, where the highest 
evaporation rate occurs between the 6th and 16th hour with minor variations, averaging around 1 kg per hour. This 
is significantly lower than the evaporation rates achieved in other studies, where the peak evaporation reached up to 
3 kg per hour using the same experimental setup [16]. 
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Fig. 3. Evaporation Rate 

The experimental results demonstrated that the predicted Brix values obtained using weight ratio calculations closely 
aligned with the manual refractometer readings up to a Brix level of 20. This significant correlation indicates that the 
weight ratio method can be used effectively in the initial stages of the palm sugar production process. However, as 
the Brix values increased beyond 20, discrepancies were observed between the two methods. The manual 
refractometer readings reached a final Brix value of 66, while the predicted Brix values based on weight ratio 
calculations only reached 44 (Figure 4). 

Brix Value Actual vs Brix value weight ratio prediction
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Fig. 4. Actual Brix Vs Weight Ratio Prediction Brix 

Brix measurements obtained using a refractometer and the calculated Brix values based on the weight ratio. The 
following is the prediction of Brix values based on water content reduction during the liquid palm sugar production 
process. The Brix values are predicted using a formula that links the water reduction ratio with the final Brix value, 
equation a. 
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Due to the difference in Brix values at the end of the graph between the Brix measurements using the refractometer 
and the predicted Brix values based on the weight ratio (fig 4), a linear regression was added to the calculation of 
the predicted Brix values from the weight ratio. 
To enhance the accuracy of the predictions, polynomial regression adjustments were applied, yielding a refined 
prediction model: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.421592 𝐵𝐵 �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏 𝑤𝑤𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝ℎ 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟� − 0.0626181   (2) 
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Fig. 5. Actual Brix Vs Weight Ratio and linear regression Prediction Brix 

Figure 5 shows the graph of the actual Brix values measured using the refractometer, the predicted values from 
linear regression, and the predicted Brix values based on the weight ratio.  
To evaluate whether the predicted Brix values by IoT system have improved, the levels of accuracy and precision of 
these Brix values were used as assessment criteria. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴 = 100 −  �
∑�𝐵𝐵𝑝𝑝𝑤𝑤𝑤𝑤𝑟𝑟−𝐵𝐵𝑖𝑖𝑟𝑟𝑖𝑖�

∑𝐵𝐵𝐴𝐴𝑟𝑟𝑖𝑖
𝐵𝐵100�%     (3) 

Where: 
− Bpred is the predicted Brix value. By IoT system. 
− Bactual is the actual Brix value measured by the refractometer 

𝑃𝑃𝐵𝐵𝑃𝑃𝐴𝐴𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = �1
𝑛𝑛

 ∑�𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐵𝐵𝑟𝑟𝑝𝑝𝑝𝑝�
2
              (4) 

Where: 
− n is the number of measurements. 

Accuracy is often expressed as an error metric, like Mean Absolute Percentage Error (MAPE). The lower the error, 
the more accurate the prediction. An accuracy value close to 100% is ideal, meaning the predicted values are very 
close to the actual values. A lower percentage indicates less accurate predictions. 
Precision is often measured using standard deviation or Root Mean Square Error (RMSE). A smaller RMSE indicates 
higher precision, meaning the predictions are consistently close to each other. The closer the RMSE is to zero, the 
better the precision. This implies less variation or spread in the predicted values compared to the actual values. 
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Table 1. Accuracy and Precision from 2 prediction model 

 Weight Ratio Prediction Brix Weight Ratio and linear regression Prediction Brix 

Accuracy 99,8885 % 99,9708 % 

Precision 246,2127 8,5573 

From the calculation of accuracy and precision, the weight ratio prediction model combined with linear regression 
provides better results compared to the weight ratio prediction model. By using a weight ratio prediction model 
combined with linear regression, the performance of the IoT system in predicting Brix values is enhanced. 

3.1 Comparative Analysis with Literature Data  

The results align with prior studies that emphasize the challenges of accurately predicting Brix levels in sugar-based 
solutions. Similar findings were reported by Jaywant et al [6], where low-cost sensors showed reliable correlations at 
lower Brix values but encountered limitations at higher concentrations due to sensor residue buildup. Ahmed et al. 
(2022) also noted the importance of manual calibration in digital Brix measurement tools, particularly when measuring 
raw sugar solutions at higher concentrations. In the context of palm sugar, Kurniawan et al. [17] discussed how 
variations in processing methods can lead to differences in Brix values, corroborating the observed deviations in this 
study. These findings reinforce the need for real-time adjustments and advanced algorithms, such as polynomial 
regression, to improve predictive accuracy at higher Brix levels. 

3.2 Scientific and Practical Implications 

The findings of this study have important implications for both scientific research and practical applications in the 
palm sugar industry. The successful use of weight ratios and predictive algorithms offers a promising alternative to 
manual refractometer readings, particularly in the early stages of sugar production, where the correlation between 
the two methods is strong. This can lead to increased process efficiency by reducing manual intervention and allowing 
for continuous monitoring of sugar concentration. Furthermore, the application of polynomial regression to adjust for 
deviations at higher Brix values provides a more robust framework for predicting sugar concentration throughout the 
production process. This contributes to the broader goal of integrating IoT technologies into palm sugar processing, 
as advocated by Wiyono et al. [10], and aligns with the industry's shift toward data-driven, automated production 
systems. 

4 CONCLUSIONS 

This study demonstrates the effectiveness of integrating real-time IoT monitoring and predictive algorithms to 
optimize liquid palm sugar production. By utilizing weight ratios and linear regression, accurate Brix value predictions 
were achieved, particularly during early stages of production. Polynomial regression further improved accuracy at 
higher Brix levels. This approach reduces reliance on manual refractometer readings, enhancing process efficiency 
and product quality control. The findings highlight the potential of data-driven methods to improve monitoring in palm 
sugar processing, contributing to the broader adoption of IoT technologies in food production industries. Future work 
may focus on refining predictive models for higher precision. 
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