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The article describes a method for estimating the rotational parameters of three-dimensional objects defi ned as a 
cloud of points in three-dimensional space, which is less complex compared to other methods and it can ensure a 
single-valued solution. The authors propose an approach of vector-fi eld modelsto parametrize images of complex 
three-dimensional objects. The paper discusses the ways for calculating the expansion coeffi cients in the basis of 
spherical harmonics for images of three-dimensional pointcloud objects. The authors offer an approach that provides 
the possibility of estimating the rotation parameters of three-dimensional objects from the values of the expansion 
coeffi cients in the basis of spherical harmonics.
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INTRODUCTION

Estimation of rotation parameters of a three-dimension-
al object is an objective for processing images [1-7], 3D 
modelingand remodeling of an object [8-13].
There are a number of approaches to solve the problem. 
The fi rst approach is based on the preliminary identifi ca-
tion of marks within the structure of the reference and ob-
servable three-dimensional objects. Thus, if we have at 
least three identifi ed marks, we can calculate the rotation 
matrix.This approach can beappliedin astro-orientation 
systems [14], insystems for highlightobjectrecognition in 
radar images by means of iterative angular matching of 
rotation parameters of 3D objects in context of a priori 
uncertainty of the angular parameters [15-17], and in or-
der to process images of polyhedron [18].
In the case when the identifi cation of marks is not feasi-
ble, or it has been executed with errors, the problem of 
estimating rotation parameters on the basis of this ap-
proach is either not solved, or solved with errors.
The second approach is based on the use of correlation 
algorithms for image processing of three-dimensional 
objects [19], but it is rathercomplex in context ofa priori 
uncertainty regarding the transformation parameters of 
scaling, rotating, and transferring.The Hoch-based trans-
formation approaches[20-24] are of lower complexity, 
however, the requirements for computational resourc-
es are quite high, and consequently, these approaches 
have less noise immunity when compared to the correla-
tion algorithms.
The third approach is based on the use of functional 
descriptions of three-dimensional surfaces that do not 
require knowledge of the numbering of samples of a 
three-dimensional object. The paper [25], gives a solu-
tion to the problem of estimating rotation parameters 
on the basis of an analysis of the projecting functions 
of a quaternion variable. One of the drawbacks of this 

approach is that it is limited to be applicable forstellar 
shapes only and it has less noise immunity when com-
pared to the correlation algorithms. The papers[26, 27], 
resent a technique for estimating rotational parameters 
on the basis of an analysis of spectral coeffi cients for 
the expansion of a function describing the surface of an 
object in the basis of spherical harmonics. The downside 
of the technique is the use of iterative procedures to de-
termine Euler angles, which complicates the procedure 
and does not guarantee the uniqueness of solution.
Thus, the objective of the work is to develop an analytical 
method for estimating rotation parameters of three-di-
mensional point cloudobjects in three-dimensional 
space, which is of low complexity and provides a sin-
gle-valued solution.

THEORY AND EXPERIMENTAL METHODS USED

Parameterization of images of three-dimensional 
objects

While trying to solve problems of processing volumet-
ric images we often use methods based on a functional 
description of the surface of a three-dimensional object 
[25-29]. For this purpose, the references that defi ne the 
surface of the object should be parametrized, i.e. they 
should be uniquely defi ned in the coordinate system 
used to represent the surface using a particular system of 
functions. When spherical harmonics or methods based 
on the projection of references onto a single sphere are 
applied, all references of the surface of the object should 
be given in a spherical coordinate system. Parameter-
ization for stellar shapes can be performed routinely by 
constructing vectors from any point inside the fi gure, for 
example, from the center of gravity, to the points on the 
surface of the object. However, this method is not appli-
cable for fi gures of a more complex shape, because in 
such a case, the ambiguity of setting the references of 
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Figure 1: Point clouds that defi ne the surfaces of the test objects

the object arises.
The paper [30] describes the methods of parametriza-
tion, which is often used for processing real images. The 
drawbacks of the methods are the dependence of the 
results of parametrization on the choice of initial condi-
tions, and the need for approximation of surface frag-
ments when constructing latitude and longitude lines. 
Additional optimization of the obtained parameterization 
result is also required.
In this paper, we offer a vector-fi eld model approach. Let 
us consider a scene with a spatial object whose surface 
is given by a point cloud obtained, for example, as a re-
sult of scanning the object (Fig. 1).
We associate with each n-th point of the surface a 
certain charge, the coordinates of which are given by a 
q(n) three-dimensional vector. Let the coordinates of 
some point of the scene be given by a  three-dimensional 
vector. Then the vector of electric fi eld intensity created 
by all charges at this point is determined by the formula 1.
Each charge can be assigned with the electric fi eld lines 
radiating from this charge and subjected to deformation 
in space due to the infl uence of the fi eld of other charges. 
Let the beginning of the force line coincide with the position 
of the charge in the scene, i.e. v0(n)=q(n), and the initial 
direction coincide with the direction of the normal vector 
to the surface at a given point. To determine the position 

(1) (2)

in space of the next point of the force line, it is essential 
to determine the direction of the electric fi eld vector at 
a given point and to move in the direction of this vector 
by some value ε. Then the coordinate of the point of the 
force line in the next step is determined by the formula 2.
The process of force line designing continues until it ex-
tends beyond the sphere of a given radius. The angular 
coordinates of the intersection point of the sphere by the 
force line are taken as the result of the parametrization 
of the n-th point. Figure 2 shows the results of design-
ing the force lines of the electric fi eld for the test objects 
shown in fi gure1.
After each point of the surface is mapped onto a sphere, 
one can perform its expansion in an orthogonal basis, for 
example, in the basis of spherical harmonics by 3.
where Pl

m (cos θ) - aretheassociated Legendre polyno-
mials of degree land order m [26, 27, 30]. The calcula-
tion of the expansion coeffi cients in the basis of spherical 
harmonics should be done by the formula 4.
i.e. the surface should be represented as a function in 
spherical coordinates. In practical terms a functional de-
scription of the surface may be absent; i.e. initial data for 
processing three-dimensional surfaces are usually point 
clouds obtained as a result of scanning. In this case, 
calculations in accordance with (4) are impossible and 
the expansion coeffi cients are determined by solving a

(3)

(4)

571

Alexey Rozhentsov, et al. - Estimation of rotation parameters of three-dimensional images by spherical harmonics analysis



Journal of Applied Engineering Science  Vol. 16, No. 4, 2018
ISSN  1451-4117 

Figure 2: Example of designing the electric fi eld lines for 3D surface parametrization

system of linear equations by:

(5)

or in the matrix form:
                                            YP=F,                                           (6)
where N is the number of references that defi ne a 
three-dimensional surface.The parameter L is set, on 
the one hand, on the basis of the required accuracy of 
the representation of the object in the basis of spherical 
harmonics, on the other hand, based on the possibility of 
a correct solution of the system (5). In such a case:

N≥L2.

If N>L2 N>L2 i.e. when the number of equations exceeds 
the number of unknowns, the solution of the system can 
be found by the method of least squares [31]:

P=((Yt)*Y)((Yt)*F).
In the case of three-dimensional parametrized surfaces, 
it is essential to separately perform the expansion in co-
ordinates x, y, z, i.e. three vectors of coordinate values are 
formed by:

fx(θ(n),ϕ(n))=x(n),
fx(θ(n),ϕ(n))=y(n),
fx((n),ϕ(n))=z(n),

n=0,1,...,N-1.
Then the expansion coeffi cients in a spherical basis for 
functions with respect to the corresponding coordinates 
can be determined by:
Px=((YT=Y)-1((YT)*Fx),
Py=((YT=Y)-1((YT)*Fy),
Pz=((YT=Y)-1((YT)*Fz),
where Fx, Fy, Fz are the vectors containing references that 
specify the coordinates  of points on the surface of the object.

EXPERIMENTAL SECTION

Figure 3 shows the results of approximation of the ob-
jects presented in fi gure 1, as well as the results of ap-
proximation of the test objects of geometric primitives: 
a cube, and a cone.If L=11 and above we can reach a 
good quality of approximation of three-dimensional sur-
faces when using the proposed method for their param-
etrization. Figure 4 shows the comparative results of the 
approximation of the test object, described in the paper 
[30]. The results show that the method proposed pro-
vides a comparable quality of surface approximation.

ESTIMATION OF ROTATION PARAMETERS
OF 3-D IMAGES

a)

Figure 3: Examples of approximation ofthe test objects: 
a) approximation of the objects presented in Figure 1
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b) c)

Figure 3: Examples of approximation ofthe test objects: 
b) approximation of thetest objects defi ning a cone and a cube

c) an example of designing a surface from approximated points for a cone and a cube

a) b) c)

d) e)

f) g)

Figure 4: Comparison of the results of approximation, a) test three-dimensional object [16]; b), c) the results of 
designing the approximated surface, respectively, when L=1 and L=2 [16];d), e) a pointcloud and the results of 

approximation using the proposed parametrization method when L=1 and L=2; f)
g) the result of the surface visualization
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If a three-dimensional image has been subjected to a 
rotation transformation, then its restoration based on the 
obtained expansion coeffi cients in the basis of spherical 
harmonics will be as follows:
where ρlm

(r) is the expansion coeffi cients of the rotated 
object. A number of papers, for example, [26, 27] show 

(7)

that there is a relationship between the expansion coeffi -
cients of the reference and the rotated objects, given by 
the Wigner D-matrix:

(8)

where

(9)

where l=0,1,2,3,..., n,m=-l,...,0...+l, α, β, γ - are Euler an-
gles.
For example, if  the Wigner D-matrix is:

(10)

Thus, in order to estimate the rotation parameters of a 
three-dimensional object by analyzing the expansion 
coeffi cients in the basis of spherical harmonics, it is es-
sential to fi nd the elements of the matrices Dnm

(l) . Let us 
consider the solution when l=1 .
We write expression (8) in the matrix form:

                                     ρ1
(r)=D(1) ρ1                                                   (11)

If only one set of coeffi cients  and is used than the matrix  
elements can not be directly expressed from (11). It is 
necessary to have at least three sets of corresponding 
coeffi cients, which can be obtained in different ways.The 
fi rst way is to allocate at least three objects in the scene 
and calculate the ρ1 and ρ1

(r) expansion coeffi cients for 

each object. The combination of coeffi cients in 3x3 ma-
trix allows us to express matrix from (11):
                                   D(1)=P1

(r)P1
-1                                                   (12)

The main drawback  of this method is the need to use 
the expansion coeffi cients of not less than three objects, 
which requires their preliminary selection and recogni-
tion in the scene.
To ensure the possibility of solving the problem of es-
timating parameters from one object, we propose the 
second method, based on the allocation of additional 
parameters of vectors q(n), drawn from the center of 
gravity of the object to the references on its surface. 
Such aparameter can be the angle between the vector  
q(n) and the normal vectorata given point on the surface 
of the object n(n). The cosine of this angle can be de-
fi ned as a standardized scalar product between the vec-
tors q(n) and n(n):

When we have values of the references of the vectors  and 
the corresponding corners , we can form three ‘quasi-fi g-
ures’ corresponding to the values │q(θ,ϕ)│, │qRe(θ,ϕ)│= 
│q(θ,ϕ)│cosψ(n), │qRe(θ,ϕ)│= │qlm(θ,ϕ)│sinψ(n) andcal-
culate three vectors of the expansion coeffi cients:

(13)

Substituting the values P1 and P1
(r) obtained in accor-

dance with (13) into (11), we can determine the matrix 
D(1).

RESULTS

Figure 5 shows images of the reference and rotated ob-
jects when α=130◦, β=35◦, γ=75◦.
The following values P1 and P1

(r) were obtained for these 
objects:

Thus, according to (11) for D(1) we get the following
results:

The obtained values of the elements of the matrix D(1)  
coincide with those calculated by formula (9).
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Figure 5: Examplesofpointfi elds, defi ningthereference (a) androtated (b) objects

CONCLUSION

Thus, the paper offers a comprehensive approach to pro-
cessing three-dimensional images within the framework 
of solving a particular problem of estimating rotation pa-
rameters of three-dimensional objects whose surface is 
given by random references.
The authors developed a technique of parametrization 
of three-dimensional images, which makes it possible to 
process images of complex three-dimensional objects.
The paper shows the method for calculating the expan-
sion coeffi cients in the basis of spherical harmonics for 
images of three-dimensional point cloud objects.
We propose an approach that provides the possibility of 
estimating the rotation parameters of three-dimensional 
objects from the values of the expansion coeffi cients in 
the basis of spherical harmonics.
The proposed approaches do not require to number the 
marks and make it possible to process objects specifi ed 
by point clouds with a different number of references. 
Furthermore, these approaches are less complex, fea-
sible for parallelization of computational operations, 
and do not involve iterative procedures, while ensuring 
uniqueness of solution.
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