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Autonomous fault-tolerant systems, operated at hard environment, are considered in this paper. It is shown that 
common method of units failure compensation, based on an introduction to the system a structural redundancy, 
leads to the increase of weight/size factor and energy consumption, but sometime does not prolongs its lifetime. The 
new approach to fault/recovery process modeling, based on use of fundamental apparatus of parallel semi-Markov 
process, in which ordinary processes simulate the life-cycle of individual units, and the complex process, assembled 
from ordinary processes, simulates reliability system as a whole, is proposed. Dependences for calculation of time 
intervals and probabilities of wandering through ordinary semi-Markov processes, with use of the recursive method 
are obtained. It is shown, that when there is rather complex model of unit life-cycle, semi-Markov process would be 
replaced with more coarse Markov process. Notions of complex semi-Markov process, such as functional states and 
semi-Markov matrices Cartesian product are introduced. Theoretical results obtained are confi rmed by the practical 
calculation of the reliability indicators of the system with passive redundancy.
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INTRODUCTION

The assurance problem can be regarded as a main prob-
lem of complex systems, operated autonomously during 
long time in unfavorable environment [1], [2], [3], [4], [5], 
[6]. The inimical environment increases failures rate of 
equipment, so it is necessary to utilize equipment units 
with higher reliability and/or endurance to external coer-
cions, or to compensate failures by means of fault-toler-
ant system creation [7], [8], [9], [10]. Common principle 
of fault-tolerance supposes introducing redundancy into 
the system structure to substitute failed unit during op-
eration, increases system weight, dimensions, energy 
consumption, etc. [27], [28], [29], [30]. Per se redundant 
units themselves are the source of faults. This is why 
preliminary redundant system simulation is of interest. 
There is the common approach to the system reliabili-
ty simulation, based on the Markov [11], [12], [13], [14] 
or semi-Markov [14], [15], [16] processes theory, which 
rather of widely used when it is necessary to describe 
sequence of faults/recoveries in one separate unit, sub-
assembly or system, which are considered as a unit 
[17]. Due to the approach, states of Markov chain are 
abstract analogues of unit states, and Markov switching 
are just alike real faults/recoveries of the element. There-
fore, wandering through Markov chain characterizes the 
life-cycle of the unit. 
When interacting units assemble is considered, simple 
Markov or semi-Markov process is insuffi cient to de-
scribe their operation in the failure tolerance regime. De-
structive/restorative processes in elements, gathered in 
assembles, develop independently. Moreover, process-
es compete [16], [18], [19] between them for a current 

fault/recovery events. Therefore, it is necessary to have 
mathematical apparatus, which, from one-side permits to 
describe fault/recovery process inside separate element, 
and from other side permits to simulate the competition 
effect in assembles. Apparatus would allow evaluate 
probabilities and time intervals of wandering through 
parallel Markov/semi-Markov process [16]. On determi-
nation, mentioned characteristics mean reliability factors 
of fault-tolerant system as a whole [5], [6], [7], [8], such 
as failure rate, mean time between failures, mean time 
to recovering, etc. 

METHODS

The approach to simulation of fault-tolerant 
systems

Let us consider fault-tolerant system, which includes M 
units, m-th of which in terms of fault tolerance modeling is 
described with semi-Markov process μm. Processes in in 
units develop in parallel, so together processesμm, 1 ≤ m ≤ M 
form complex M-parallel  semi-Markov process [16, 20] as 
follows

(1)

(2)

(3)

Semi-Markov process μm  includes set of structural states 
(below “states”) Am  and semi-Markov matrix:  hm(t)

where t is the time. 
Set of states   may be represented as conjunction
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(4)

elements of hm(t) main diagonal are equal to zeros, that 
describes graph without loops, physically it means, that 
during exploiting unit physical condition currently switch-
es from one state to another, and after switching unit 
does not remain in the same condition, as before switch-
ing; 
probabilities of stochastic matrix pm refl ect those or that 
cause of element fail, or possibility of repair element with 
those or that result;
densities of matrix fm(t) describe how many times lasts 
period till fail with concrete cause or how many times will 
be spent till element restoration;
for elements of rows from 0(m)-th till [J(m)-1]-th the next 
expression is true:

(5)

for elements of rows from 0(m)-th till [J(m)-1]-th the next 
expression is true:
both probabilities of  pm-matrix and parameters of den-
sities of  fm(t)-matrix (expectation, dispersion, initial 
and central moments of higher orders) depend on the 
substance, of which the element is made, a quality of 
element manufacturing and assembling, an exploiting 
conditions, side effects, etc, and defi ne parameters of 
wandering through the semi-Markov process μm.

in which Am ∩ An = Ø , when m ≠ n; Am={a0(m),..., aj(m),..., 
aJ(m)}; a0(m)  is the starting state of the m-th semi-Markov 
process, meaning the start of m-th unit exploitation (el-
ement is surely able to work); aj(m) is mathematic ana-
logue m-th unit state (able to work, unable to work, short-
time failed, under repair, etc.); aJ(m)  is absorbing state of 
semi-Markov process, which is mathematic analogue of 
fully destroyed element. 
Semi-Markov matrix hm(t)  is as follows:

where pm is the [J(m)+1] × [J(m)+1] stochastic matrix;   
fm(t) is the [J(m)+1] × [J(m)+1] matrix of time densities of 
residence process μm in states of set Am;
hj(m),k(m)(t)=pj(m),k(m) ∙ fj(m),k(m)(t); pj(m),k(m)  is the priori proba-
bility of switching from the state  aj(m) to the state  ak(m) 
when wandering through states semi-Markov process  
μm; fj(m),k(m)(t)  is time density of residence the process in 
the state  aj(m), when there was the decision about switch-
ing to the state  ak(m).
Due to assumptions, that a0(m) is the starting state, and    
aJ(m) is absorbing state, semi-Markov matrix has the next 
features (fi g. 1 a):

Figure 1: The structure of elementary failure/recovery process

elements of the matrix hm(t) zero column are all equal to 
zeros, so during wandering it is impossible to return to 
the state a0(m), which describes the case of surely work-
able m-th unit;
elements of J(m)-th row are all equal to zeros, so fully 
destroyed unit can not be returned to operation;
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Single element reliability parameters calculation

As it is known [16], [21], time density of wandering 
through the semi-Markov process (2) from the state a0(m)  
to the state aJ(m) is as follows:

where IR
0(m)  is the [J(m)+1]-size row-vector, in which  

0(m)-th element is equal to one, and other elements are 
equal to zeros; IÑ

0(m) is the [J(m)+1]-size column-vector, 
in which J(m)-th element is equal to one, and other ele-
ments are equal to zeros; L[...]  and L-1[...]   are direct and 
inverse Laplace transforms, correspondingly.
The interim Laplace transform in (6) is necessary to re-
place semi-Markov matrix convolution operation, which 
is not defi ned, with characteristic matrix multiplication 
operation, which is well known. The dependence (6) 
defi nes pure (not weighed) density of time of reaching 
the state aJ(m)  from the state a0(m), by defi nition of matrix 
product operation [22], and due to the fact, that there is 
the only starting state a0(m) and only absorbing state aJ(m)  
in the semi-Markov process.
Mean “lifetime” of m-th element in the system and prob-
ability of the fact, that m-th element remains operable 
during time θ, are as follows:  

(10)

(11)

(12)

(13)

(14) 

(15)

Besides the task of time density f0(m),J(m)(t) defi nition 
fault-tolerant system designer would to solve, the task of 
defi nition of time density of reaching arbitrary state ak(m)  
from the state  aj(m),1(m) ≤ j(m) ≤ J(m), so both states 
are no startin, not absorbing. When j(m) ≠ k(m), the task 
may be interpreted as defi nition the time interval till fail-
ure, or defi nition the repair time. When  j(m) = k(m), the 
task may be interpreted as defi nition the time interval be-
tween failures, or time interval between repairing. The 
only restriction, imposed onto wandering trajectories, is 
that neither state aj(m)  nor state ak(m)  process should fall 
twice. In other to satisfy the restriction state aj(m) should 
get status starting one, and state aj(m) should get status 
absorbing one. When j(m) = k(m), the state aj(m) should 
be split onto starting and absorbing substates. 
First case is shown on the fi g. 1 b, where is shown the 
graph, fi g. 1 a, from which all arks, leading to the state  
aj(m), and all arks, leading from the state ak(m), are deleted. 
To form such structure in semi-Markov matrix hm(t) all 
elements of  j(m)-th column and k(m)-th row should be 
replaced to zeros. Elements hi(m),l(m)(t) should be recalcu-
lated as follows:

(6)

(7)

(8)

(9)

So hm(t) is transformed to matrix h'm(t) as follows:

where IR
j(m) is the row-vector, in which  j(m)-th element is 

equal to one, and other elements are equal to zeros; IÑ
k(m)  

is the column-vector, in which k(m)-th element is equal to 
one, and other elements are equal to zeros.
In the semi-Markov process h'm(t) there are as minimum 
two absorbing states: namely ak(m) and aj(m), so group of 
events of reaching   from   is not full and in common case 
h'j(m),k(m)(t)   is weighted, but not pure density. The state 
ak(m) from the state aj(m)  may be reached with probability

Pure time density of wandering from the state aj(m) to the 
state ak(m) may be defi ned as follows:

Second case is shown on the fi g. 1 c, where state aj(m) is 
split onto starting state aj(m) and absorbing state aJ(m)+1. To 
form such structure in semi-Markov hm(t) next changes 
should be done:
one row and one column should be added to the matrix;
added,  [J(m)+1]-th, row should be fulfi lled with zeros;
 j(m)-th column at fi rst should be carried to the  [J(m)+1]-
th column, and then it should be fulfi lled by zeros.
So hm(t)  is transformed to [J(m)+1] × [J(m)+1] matrix 
h"(t) as follows:

Stochastic summation of densities, formed on all possi-
ble wandering trajectories gives next expression:

Stochastic summation of densities, formed on all possi-
ble wandering trajectories gives next expression:

where IR
j(m is the [J(m)+2]-size row-vector, in which  j(m)-

th element is equal to one, and other elements are equal 
to zeros; IÑ

J(m)+1 is the [J(m)+2]-size column-vector, in 

~

~
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(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26) 

(27)

(28)

which   [J(m)+1]-th element is equal to one, and other 
elements are equal to zeros.
In the semi-Markov process h"(t) there are two absorb-
ing states: namely aJ(m) and aJ(m)+1, so group of events of 
reaching aJ(m)+1 from aj(m) is not full and in common case   
is weighted, but not pure density. The state aJ(m)+1 from 
the state aj(m) may be reached with probability 

and pure time density of wandering from the state aj(m) to 
the state ak(m) may be defi ned as follows:

From (13) and (17) mean time of reaching ak(m) from aj(m)  
probability of reaching ak(m) from aj(m) during time θ, mean 
time of returning to the state aj(m) and probability of re-
turning to aj(m) during time θ may be obtained as follows 
[23]:

As it follows from (6), (13), (17) computational complexity 
of estimation of f0(m),J(m)(t), f'j(m),k(m)(t) and f"j(m),J(m)+1(t) is ex-
tremely high, which is linked with necessity of execution 
of direct and inverse Laplace transform, exponentiation 
of semi-Markov matrix to infi nite degree, extraction from 
the result the only weighed density element and estima-
tion of its probability and pure density. To reduce compu-
tational complexity it is necessary to take advantage of 
B.Grigelionis theorem [24] and recursive procedure [21]. 

Due to the theorem by B.Grigelionis combination of 
non-Poisson fl uxes approximately converge to the fl ux-
es with Poisson properties [25]. So, both f0(m),J(m)(t), and 
f'j(m),k(m)(t), or f"j(m),J(m)+1(t) may be correspondingly approxi-
mated with exponential distribution densities:
In such a way, description of time intervals between 
events, based on the semi-Markov processes, are sub-
stituted by description, based on pure Markov process-
es. Of course, such substitutions coarsen the model [26], 
but permit to substantially simplify math calculations, 
when one would investigate and/or solve practical prob-
lems of system fault-tolerant design. As seen from (22), 
(23), (24), there is only parameter in exponential density, 
namely expectation, which one should to have for com-
prehensive description of the events fl ux. So the method 
should be oriented on accelerated numerical calculation 
the expectations namely. After all, method should not in-
clude matrix raising into degree, which tends to infi nity, 
as it is in (6), (11), (15).

The recursive method of expectation calculation

For description the method let us consider abstract Mar-
kov process, which is described with matrix

Abstract Markov process may be represented with 
the stochastic matrix q = (qr,s) and expectation matrix 
Y = (Yr,s), obtained from x(t) as follows: 
Abstract Markov process may be represented with 
the stochastic matrix q = (qr,s) and expectation matrix 
Y = (Yr,s), obtained from x(t) as follows: 

where Y' is the matrix of weighted expectations; Y'/q is 
the operation of direct (element-by-element) division of 
matrices. 

~ ~ ~

~
~ ~
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For realization of recursive method [21] let us to intro-
duce four elementary transformations of Markov process 
structure, which are shown on fi g. 2.
On the fi g. 2 a the integration of sequential situated 
states is shown. Probability and expectation of time of 
wandering from ar to as are determined with the next de-
pendencies:

(29)

where ql ϵ (qr,s), when l ϵ {r, r+1, ..., l, ..., s-1, s} , are 
probabilities of switching from previous state, belonging 
to wandering trajectory, shown on the fi g. 2 a, to the next 
state, belonging the same trajectory; Yl ϵ (Yr,s) are time 
expectations of residence in states, belonging to wan-
dering trajectory, shown on the fi g. 2.
On the fi g. 2 b the integration of parallel arcs is shown. 
Probability and time expectation of switching from r to s 
are determined by the next dependencies:

(30)

where l is the number of arc leading from r to s; qr, l, s,  
Tr, l, s are probabilities, and expectations of wandering 
from r to s with l-th arc.

(31)

Figure 2: Operations of Markov sub-process reducing

Fig. 2 c shows elimination of loop. Probability and time 
expectation of switching from r to s are as follows:

(32)

It is necessary to admit, that at fi rst in Markov process   
x(t) there is neither parallel arks, nor loops. Named struc-
tural elements appear during recursive transformations 
of the process (25).
Fig. 2 c shows splitting the state s onto states s1 and s2. 
Probabilities and time expectations, when splitting, are 
as follows:

In (29), (30), (31), (32) symbols with tilde means param-
eter’s value after transformation; symbols without tilde 
means parameter’s value before transformation.
The recursive transformation presupposes sequential 
elimination of states from s-th, till necessary number. Let 
on the fi rst step of recursion graph be the full S-states 
one with no loops. On the discussed step of recursion 
only s states remain in the graph. States are re-numerat-
ed in comparison with numeration of (25) in such a way, 
that initial and destination states have numbers one and 
two, correspondingly, that is necessary for simplifi cation 
of recursion procedure indexation. 
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Figure 3: Double splitting the state s

Procedure starts from double splitting the state with high-
est current number s is it is shown on the fi g. 3. The 
fi rst splitting gives the set As = {As,1, ..., As,r, ..., As,s-1}, r-th 
element of which, namely As,r performs, in turn, the set 
of states, which are obtained after second splitting as 
follows: As,r= {as,r,1, ..., As,r,r, ..., As,r,s-1}. Common number 
of states, which perform the state s after double splitting, 
is equal to (s-1)2. Indexation after splitting is as follows: 
fi rst index performs number of state under splitting, sec-
ond index mean state number, from which arc, leading to 
state after splitting issues; third index means state num-
ber, to which arc, leading from the state after splitting, 
falls.

(33)

In other to ensure equivalency of transforms, probabil-
ities and expectations must be recalculated in accor-
dance with dependencies (32) and (29):

(34)

On second step, in accordance with (30), parallel arcs 
should be integrated, and both probabilities, and expec-
tations should be integrated as follows:

(35)

On third step, loops, which emerges after double split-
ting, should be eliminated and probabilities and expec-
tations should be recalculated in accordance with (31):

(36)

After deleting of loops in the graph stay s - 1 states only 
and it is ready for next recursion stage. Recursion one 
need to continue, until in te reduced Markov process stay 
only two (in the case of hm(t)) or four (in the cases of 
h'm(t), h"m(t)) states, including states under investigation. 
The result of calculation is time expectations of Markov 
processes (22), (23) or (24), which can be used when 
investigate competition in fault-tolerant system.

(37)

Results and Discussions 

Interaction in fault-tolerant system

In real fault-tolerant system (1) semi-Markov every pro-
cesses μm do not operates separately, by itself, but pro-
cesses really interact between them [16, 18, 19]. So, 
there may be created such abstraction, as complex 
M-parallel semi-Markov process [16] 

(38)

where  M A - is the set of functional states; M h(t)- is the 
semi-Markov matrix.

(39)

Functional states are formed from structural states, men-
tioned in (1), by mean of Cartesian multiplication of sets 
Am, 1 ≤ m ≤ M, namely

where αj(α) = [αj(1), ..., αk(m), ..., αi(M)] is the function-
al state;   is the symbol of group Cartesian product; 
J(α) = ∏ |Am| = ∏ J(m).
To defi ne semi-Markov matrix M h(t), semi-Markov ma-
trices Cartesian multiplication operation should be intro-
duced, in which matrices hm(t) are considered as specif-
ically ordered sets: 

As it follows from (18), indices of  M h(t) rows and col-
umns are vectors,

Let semi-Markov process Mμ switches into the state 
αj(α). During sojourn of processes μm 1 ≤ m ≤ M  in the 
states αj(1), ..., αj(m), ..., αj(M), vectors of weighted densities 
hj(m)(t)  = [hj(m),0(m)(t), ..., hj(m),k(m)(t), ..., hj(m),J(m)(t)]  for 
1 ≤ m ≤ M compete between them. There are 
J(α) possible directions of competition. Direction 
αk(α) = [αk(1), ..., αk(m), ..., αk(M)] would be selected with prob-
ability

Larkin V. Evgenii, et al. - Engineering method of fault-tolerant systems simulation



Journal of Applied Engineering Science  Vol. 17, No. 3, 2019
ISSN 1451-4117

301

(40)

(41)

(42)

Within the selected direction weighted time of winning 
the competition by the process  , with taking into account 
probability of selected direction, is as follows: (43)

where l is auxiliary index.
Elements Mhj(α),[j(1), ..., j(m-1),k(m),j(m+1), ..., j(M)] (t), 1 1 ≤ m ≤ M, ful fi ll 
proper cells of the semi-Markov matrix Mh(t) j(α) -th row. 
The remaining cells of this row are fulfi lled with zeros. 
In such a way Cartesian multiplication (38) is executed.
It is necessary to admit the next.
1) Permutation of factors in Cartesian product (38) leads 
only to permutation in rows and in columns in semi-Mar-
kov matrix Mh(t), and not change matrix as a whole. 
Complex semi-Markov process obtained is just alike 
ordinary semi-Markov process with set of states (37) 
and semi-Markov matrix (38). To solve the problem of 
evaluation of fault-tolerant parameters, such as: time of 
obtaining the state, in which l elements of M are in work-
able state; probability the situation, in which at current 
time m elements of M are in repaired condition, etc. one 
should to use method, proposed in section 3, with .using 
as basic abstraction the model of complex semi-Markov 
process (36).
2) Number of columns and rows in semi-Markov matrix 
Mh(t) increases with geometric progression in accor-
dance with dimensions of matrices hm(t), 1 ≤ m ≤ M, so, 
computational complexity of fault-tolerant system anal-
ysis problem depends on degree of matrices hm(t) sim-
plifi cation with use methods, discussed in section 3. In 
limiting case semi-Markov process Mh(t) would include 
only two states, and semi-Markov matrix hm(t) is 2×2 di-
mension matrix, so rows and columns of Mh(t) may be 
numerated with binary code, that facilitates the problem 
solution.

Example

The system, which includes units, fault/recovery struc-
ture of which is shown on the fi g. 2 with right without 
side arcs. Semi-Markov model of the unit fault/recoveries 
process is as follows: 

Figure 4: Density of unit “lifetime”

where r,s are states, simulated operation between fail-
ures and overall destruction of unit, correspondingly; g(t) 
is the time density with expectation T; p is the probability 
of short-time failure; (1 - p) is the probability of unit de-
struction.

In accordance with method, discussed in section 3, 
semi-Markov process (42) is transformed into the pro-
cess μ, structure of which is shown on the fi g. 2 с, left 
without side arcs.:

where              is a unit lifetime.

Conformity of lifetime interval to exponential law was 
verifi ed with use direct Monte-Carlo method for the 
case, when g(t) is uniform distribution, g(t) = 1, when 
t (t - 1) ≤ 0,5. Result of verifi cation is shown on the fi g. 5, 
where experimental histogram, which is just alike expo-
nential law, is shown. Experimental expectation is equal 
to 1,96 grades of time, (error less then 1,5 % of theoreti-
cal 2 grades of time).

~ ~

~

Into fault-tolerant system M units enable in parallel, to 
provide a passive redundancy [7], [8], [9], as it is shown 
on the fi g. 5. Structural states of semi-Markov model (43) 
fulfi ll functional states, shown on the fi g. 5. As an absorb-
ing state in the structure the boundary of functional state 
is used. State the system as a whole is divided onto hier-
archical levels. On the upper, M-th level all M units are in 
workable state. Functional state αM,1 is marked as vector  
[11, ..., 11], including M “ones”. When m-th semi-Markov 
process switches, proper “one” transforms to “zero”. In 
the vector stays M - 1 “ones” and system as a whole 
decrements on the (M - 1)-th level, where there are 
(M - 1) workable units. Functional state αM-1,m is marked 
as vector [11, ..., 11], including (M - 1) “ones”. Bottom lev-
el includes only absorbing states, nominated as 0, and 
it means, that no workable units there are in the system. 
Let on the L-th level functional state there are L of M 
workable units, which just stay “alive” after severe fail-
ures of other units. Due to the fact, that on L-th hierar-
chical level may exist its specifi c unit loading conditions, 
which change probabilities p and time intervals between 
events T, index L is used, i.e. on this level p = pL, T = TL. 
So the time density fL(t) and the time expectation TL of 
decline system from L-th to (L - 1)-th level are as follows:

 Larkin V. Evgenii, et al. - Engineering method of fault-tolerant systems simulation
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(44)

(45)

Figure 5: Model of fault-tolerant system with passive 
redundancy

Common time to failure of the fault-tolerant system, as a 
whole, is as follows:

Backup effi ciency may be evaluated as                    ,

where T0 is time to failure of only unit in non-overloading 
regime of exploitation.
Models, based on the classic semi-Markov process the-
ory [20, 31, 32], are rather cumbersome, but permit quite 
exactly to describe number of effects emerging in sys-
tems under investigation. Theory of parallel semi-Mar-
kov processes is not in common use when solving urgent 
fault-tolerance problems that explains necessity of pro-
posed mathematical apparatus development.

CONCLUSION

To sum up, dependences for calculation of time inter-
vals and probabilities of wandering through ordinary 
semi-Markov processes, with use of the recursive meth-
od are obtained. Notions of complex semi-Markov pro-
cess such as functional states and semi-Markov matri-
ces Cartesian product are introduced.
The simulation of fault-tolerant systems has been pro-

posed to be divided into three stages. On the fi rst stage 
ordinary semi-Markov models of separate units lifecycles 
should be developed, and this models should be simpli-
fi ed till semi-Markov processes with minimal number of 
states, in the limit, till two-state Markov processes. At the 
second stage one should gather ordinary semi-Markov 
processes, operating in parallel, to complex semi-Markov 
process with functional states. parameters of residence 
in which are calculated with use operation of Cartesian 
multiplication of semi-Markov matrices. At the third stage 
the abstraction - complex semi-Markov process - is used 
for estimation of reliability parameters of the fault-toler-
ant system as a whole. If the system has a more com-
plex hierarchical structure, in which blocks of the next 
level are assembled from units of previous level, then 
describing blocks complex semi-Markov processes may 
be considered as ordinary processes from which com-
plex process of next hierarchical level may be formed, 
etc. The approach proposed permits to create model of 
redundant system with any degree of complexity.
Further research in this area may be directed to simu-
lation the great number of practical redundant systems 
with complex interactions between components and 
complex algorithms of lifecycle. Also method of fault-tol-
erant system optimization, based on Petri-Markov nets 
approach may be worked out too. 
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