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In this paper we are using the waiting system theory and we make a mathematical analysis, to fi nd the optimal solu-
tion for a smart parking system. We apply to the smart parking system the theory of one waiting system with many 
points of service, and for the compatible parking space. Μore specifi cally, according to the waiting system theory 
, we made a count of customers so we can see the number of customers trying to fi nd a parking space. Then we 
mentioned the customers who arrive in the system either according to a known space or otherwise, at “random” 
mathematical times. In the “random” times that customers have come to the system, we have been helped by the dis-
tribution of Poisson. Thus, we have clearly seen the time of customer service as well as their positions in the system. 
In the end, we analyzed the models of Poisson distribution where each separately explains the cases of customers in 
the system and with mathematical equations we arrived at a right outcome. It is necessary to notice that, the following 
proof is a mathematical example to understand the proper use of a smart parking by using the Waiting system theory 
and Poisson distribution.

Key words: Mathematic Analysis, Poisson distribution, Waiting system, parking, Telemetry

INTRODUCTION

Finding an economical and easy parking in a congested 
country like Greece is really diffi cult. So, we had an idea 
to fi nd a solution for that fact. We decided to analyze 
with mathematical precision a smart parking system for 
telemetry applications and a right parking space for our 
country. Our mathematical analysis based on the waiting 
system theory for the source of costumers , the arrivals 
of the costumers in the parking lot, so that we could ar-
rive at the distribution of Poisson for a clear conclusion. 
With the help of mathematical equations we ended up 
in two customer cases, the automated parking system 
and the compatible parking system. What we understood 
was that with the proper cost of operation and the aver-
age of customers an automated parking system is much 
better for the right balance and a parking space than the 
compatible parking system.

METHOD

According to the textbook of Georgios Kostaras, who is 
teaching at the University of Patras in the postgraduate 
section entitled "Computer Mathematics and Decisions" 
,waiting systems are ordinary in service systems where 
demand  for a service can’t be met sometimes directly 
by the capacity of the system that provides the service. 
Knowing the functional characteristics of service and 
queue queues can result in spectacular improvements 
in performance. The performance of the system is eval-
uated on the basis of the values of some key indicators 
(performance indices - functionality measures), such as 

the average wait time of a customer in the waiting sys-
tem, the total average stay time of a client in the system, 
the average number of customers in the waiting system, 
the average number of customers in the system, the em-
ployment rate of the service or service locations, etc. The 
purpose of the study of a service system is to minimize its 
operating costs provided the prices of the performance 
indices As the system meet minimum standards.

Waiting System Features

Customer Source: The population from which custom-
ers arrive is considered to be either infi nite (practically 
very large), such as bank customers, cars at toll stations, 
etc., or fi nite, as for example in the case of the machines 
of a factory waiting for repair. On more waiting systems, 
unless we specifi cally refer to a fi nite population, we will 
assume that the population from which the system's "cli-
ents" are inexperienced.
Arrivals in the System: In each waiting system there 
are "customers" who come for service. By the generic 
term "customer" we mean the persons, objects or events 
that enter the system for service. Arrivals in a queue sys-
tem are characterized by the following key features:
Arrival Distribution: "Customers" arrive at the system ei-
ther at a known and constant rate (eg a semi-fi nished 
product at a workstation exactly every 15 minutes) or 
else, as in most cases, at "random" times eg patients 
on call). Arrivals are considered random when they are 
independent of one another (no one is affected by an 
earlier one) and their timing can’t be predicted exactly. In 
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this case, the Average arrivals rate is the average num-
ber of arrivals per unit of time (eg "customers" per hour). 
In queue theory, the random variable "number of arrivals 
per unit time" can often be approximated by the Pois-
son distribution. If this is done then the average value of 
Poisson corresponds to the average of arrivals per unit 
of time, denoted by λ and is the average rate of arriv-
als per unit of time. For example, if in a service system 
the arrival process follows the Poisson distribution and 
arrives on an average of 10 customers per hour, then 
λ = 10 and this is the average Poisson allocation for the 
arrivals process. If we show X the arrivals that are likely 
to be made in one hour (ie in the time unit), then X is as 
mentioned, a random variable and the probability to get 
it a certain value of x (x is a given number) is given by 
the relationship:

Note that when the average rate of arrivals is λ (= 10 
persons / hour as mentioned above), then it is reason-
able to assume that between two consecutive arrivals, 
time is averaged equal to 1 / λ (= 1/10 6 minutes in the 
example).
Service Time: The time required to serve the customer 
may be fi xed (eg in an automatic car wash where exactly 
10 minutes are required for each vehicle, at a process-
ing station in an industry where exactly three seconds 
are required to fi t a component) or, as is the case with 
most sleep queue systems, it is volatile due to various 
factors. For many sleep queue systems, we can assume 
that service time follows the exponential distribution, with 
an average of 1 / μ. For example, if a cashier in a bank is 
able to serve an average of 15 people per hour, then we 
say that the average service rate is μ = 15 people / hour 
and logically 1 / μ = 1/15 hours is the average service 
time (i.e. in this case is 1 / μ = 1/15 hours = 4 minutes). 
If T is the time required for a service, then T is a random 
variable and the probability that this time is less than or 
equal to a given value of t is given by:

where μ, as mentioned, denotes the average number of 
customers served in the time unit.
Service locations: For a waiting customer, there may 
be more than one parallel service (eg bank, toll, trea-
sury, etc.). In this case, the customer is served by the 
fi rst available service location. Also, for the full service 
of the client, it is necessary to have it successively in 
more than one service place, ie it is served in successive 
phases (eg the processing of a job requiring multi-stage 
approvals).
Waiting system Function: The queue is formed by 
'customers' waiting to be serviced. The way in which a 
queued customer is selected to serve is one of the main 

features of queuing systems and is called discipline. The 
methods applied are mainly:

• FIFO (First In First Out): Customers are served on a 
turn-by-turn basis.

• LIFO (Last In First Out): Customers are serviced in-
versely in turn-by-turn order.

• Random Selection: Customers are randomly select-
ed by queued.

• Priorities: Customers are divided into categories with 
different priorities. First, customers with the highest 
priority are selected. Among customers with the 
same priority class, the one who is most likely to wait 
for the longest time (eg disabled, elderly, fi rst served)

Another interesting feature concerning the queue is its 
capacity. The capacity of the queue can be infi nite (prac-
tically, whoever comes in may stay) or fi nite (when some-
one comes in after having all the queues occupied, he 
can’t enter the system).
Model symbology: Depending on the operating char-
acteristics of a queue system, we also have a different 
model of its analysis.
We are having a handy fi ve-symbol symbol having the 
general form "A / B / s / k / N", where the symbols repre-
sent the following:

• A: Location for the Customer Input Allocation sym-
bol. Possible symbol for position A is M, representing 
the Poisson process. Other symbols are G, which 
means general or any distribution, and D means 
a deterministic entry process, that is to say, with a 
known Deterministic.

• B: location for the service time allocation symbol. 
The same symbols are used as in case A.

• s: position for the number of parallel service loca-
tions.

• k: position for service capacity when queue positions 
are limited. K is the number of queues together with 
service locations.

• N: position for the number of customers at source 
when fi nite.

Before proceeding to quote the models, we note that 
when we have a Poisson distribution with an average 
arrival rate equal to λ, then the time between succes-
sive arrivals follows an exponential distribution with an 
average value of 1 / λ. Similarly, when the service time 
follows an exponential distribution with an average of 1 / 
μ, then the number of customers served in a time inter-
val follows a Poisson distribution with an average value 
of μ. We have already reported some data on this as a 
further example, let us assume that we have a central 
computing system in which the work entry process fol-
lows a Poisson distribution with an average λ = 20 jobs 
per minute. Then, the time between successive arrivals 
follows an exponential distribution with an average value 
of 1 / λ = 1/20 minutes, that is, 3 seconds on average. 
This is very logical, since when we have a system that 
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arrives on an average of 20 jobs a minute, we can ac-
tually assume we have an average of one work per 3 
seconds. Be careful! This does not mean that and in fact 
we always have a job to arrive every 3 seconds, just this 
is the average behavior of the entry process. Similarly, 
let us have the computer system (a service facility) that 
can handle an average job in 2 seconds following an ex-
ponential distribution for the service time. Then it is 1 / 
μ = 1/30 minutes (= 2 seconds) and the number of jobs 
served per minute follows the Poisson distribution, with 
an average μ = 30 operations per minute.
It is also important to refer to the concept of steady state. 
A system is in a balanced state when its behavior does 
not depend on the initial conditions at its start-up. That 
is, a service system reaches equilibrium when a reason-
able period of time has elapsed since its initial condition, 
during which the effect of the starting conditions is elimi-
nated. The period required for the system to not depend 
on the initial starting conditions and converge to equilib-
rium is called the transition period (warm period). The 
models mentioned below and the type we use consider 
the system to be in balance.

MATH

Note: We are considering the parking as a service center 
without looking at its internal features. This explains the 
long service time of the parking system.

Model M / M / 1

It is used to study a queuing system where the following 
applies: The customer arrival process follows the Pois-
son allocation with an average arrival rate of λ per unit 
of time. The service process follows a Poisson distribu-
tion with an average number of customers served per 
unit time equal to μ. That is, the service time follows the 
exponential distribution with an average value of 1 / μ. 
There is a service station. The number of customers at 
source is infi nite (too large), customers are served with 
FIFO discipline, they form a queue that has infi nite ca-
pacity and does not leave as long as the tail is. The fun-
damental relationship that must be in place for a state of 
equilibrium can be found.

Model M / M / s

It is used to study a queuing system where the following 
applies: The customer arrival process follows the Pois-
son allocation with an average of arrivals λ per unit of 
time. There are more than one parallel service (s> 1). 
The service time in each location follows the exponential 
distribution with an average number of customers served 
at each location, per unit of time. The number of custom-
ers at source is practically infi nite, customers are served 
on a FIFO basis, they form a queue that has infi nite ca-
pacity and does not leave as long as the queue is and is 
served by the fi rst available service unit. The fundamen-
tal relationship that must be in place for a balance can 
be found.

Determination of capacity of service systems

The objective of analyzing waiting systems is usually to 
determine the system's capacity, that is, the number of 
service locations, for which the overall expected variable 
cost of the system is minimized. This cost for an enter-
prise consists of two sub-components, the cost of wait-
ing for customers and the cost of providing the service. 
When the capacity of the system increases with addi-
tional service locations, the average customer service 
time in the system decreases, this reducing the cost of 
waiting for customers. In this case, the cost of providing 
the service is increased due to the addition of service 
locations. On the other hand, when system capacity is 
reduced, the cost of customer staying in the system in-
creases due to an increase in their stay time, but at the 
same time reduces service costs due to a lower number 
of service locations. So the question is how we can bal-
ance between the waiting costs of customers and the 
cost of service on the part of the company by designing 
the service system in the most appropriate manner.

Confi guring cost-effectiveness

The total variable cost of operation of the system, which 
we denote by TC (Total Cost), is the sum of two individu-
al cost elements, the cost of waiting for customers, which 
we denote by WC (Waiting Cost) and the service cost of 
the system, which we denote with SC (Service Cost). Let 
us denote the cost of waiting a customer in the time unit. 
Note that when we refer to standby costs, we basically 
mean the total time of the customer's stay in the system. 
Consequently, once we have denoted the average total 
time of a customer's stay in the system, the expected 
cost of waiting the customer is in the unit of time. Howev-
er, this quantity refers to a single customer and does not 
refl ect the total cost of waiting for customers. In order to 
calculate the total expected customer cost, we multiply 
this quantity by the average rate of arrivals of customers 
per unit of time, i.e. by λ.  So, we have that:

As you can see, the wait time of the customers in the unit 
per time, WC, ultimately results from the product of the 
customer's waiting time in the unit of time with the aver-
age number of customers in the system. At this point, we 
consider it worthwhile to refer in more detail to the cost 
of a customer in the time unit, that is to say. Its discretion 
depends mainly on whether the customer is part of the 
service (internal customer) or not (external customer). If 
the client is internal to the system, e.g. owned vehicles of 
the company waiting to be loaded / unloaded, machines 
that remain unused due to damage and are not repaired 
immediately, craftsmen expecting equipment or spare 
parts to repair engine damage, semi-fi nished products 
"waiting" for their shipment to the next production phase, 
etc., then the estimate of the customer's cost of waiting 
is relatively easy. 
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Μ/Μ/1 Μ/Μ/s

Ls :  average number of customers 
in service

ρ:  Degree of service of the service 
system

Lq:  average number of customers 
in waiting

L:  average number of customers 
in the system as a whole

Wq:  average wait time for a cus-
tomer in the waiting system

W:  average stay time of a client in 
the system

P0:  the probability that there is no 
client in the system or the equiva-
lent of the time that all the posi-
tions are inactive

Pw:   the probability that a custom-
er who arrives in the system will 
have to wait

Pn: probability of n customers in 
the system

Pn>k: the likelihood of there being 
more than one customer in the 
system

Table 1 : Mathematical formulas for Model M/M/1 and Model M/M/s

On the contrary, when customers are not part of the 
service system (external customers), such as super-
market customers, maintenance or repair vehicles in a 
workshop, patients in outpatient clinics, etc., the cost 
estimate from customer expectation is more diffi cult. In 
these cases of external customers, actual standby costs 
may vary considerably from customer to customer.
With regard to service costs, things are simpler. We have 

seen that the key factor determining the service cost is 
the number of service locations, i.e. s. If it represents the 
service cost of one position in the unit of time, then the 
service cost SC for offered capacity s is:

Using the relations (3) and (4) we get the relation (5) that 
gives the total expected variable cost of operation of the 
system to the unit of time:

205

Panagiotis Kogias - Mathematical analysis of a parking system for telemetry applications

4)



Journal of Applied Engineering Science  Vol. 16, No. 2, 2018
ISSN  1451-4117 

w sTC WC SC c L c s   
To identify the optimum capacity of a service system, 
you need to specify TC for different s values and select 
that s, which corresponds to the lowest total cost of op-
eration. Since the behavior of the "function" TC is con-
vex it is easy to identify the only minimum. In relation 
(6) the values of the coeffi cients are estimates and in 
particular it is more diffi cult to calculate than. Therefore, 
the total TC cost is an approximation as accurate as the 
estimates of the above values are accurate. Also, if we 
consider that the customer's time at the service site is 
not included in the cost, we can use a model based only 
on waiting queue rather than the total time spent in the 
system. Then, it is enough to replace in relation (6) with 
it, so we get the relation:

w q sTC WC SC c L c s   
One company belongs to the automated parking area, 
operating in the following way A:
Peak customers demanding service, arrive on average 
every 1.6 minutes with the time inserted between suc-
cessive arrivals following the exponential distribution. At 
peak times the automated system keeps open 5 evenly 
parking with a common waiting system and FIFO dis-
cipline. Based on historical fi nancial analysis, it is esti-
mated that when customers are in the queue of either 
waiting or servicing customers, they incur a cost to the 
company of € 3 per hour (per customer). One of the fi ve 
uniforms takes an average of 6 minutes to complete a 
customer service, following an expansive service time 
allocation. The relative (variable) hourly cost for the com-
pany to maintain an open parking space is € 45.
If the company operated the fi ve (5) parking spaces as if 
they were each in accordance with mode B:
There can be nothing to change about the way custom-
ers arrive, which continues to be an average custom-
er per 1.6 minutes with exponential distribution. One of 
these fi ve parking spaces will have their own waiting sys-
tem with FIFO discipline .. It is noted that from the data 
available there is known that the percentage of clients 
coming in that category that come to each conventional 
parking space accounts for 20% customers. The aver-
age customer service time is 10 minutes (exponential 
service time allocation). The cost of waiting - customer 
stay and for company B remains the same as in case A 
regardless of the category to which it belongs, that is, € 
3 per hour (per customer). The same as before, the ser-
vice cost is still € 45 per hour.

RESULTS

Prerequisites for Current State A:
Customers arrive by Poisson process at an average rate 
of λ = 37.5 clients / hour, after the average time between 
successive arrivals is 1.6 minutes (60 / 1.6 = 37.5). We 
have fi ve uniform parking spaces, each having the same 

service rate (Poisson) at an average rate of at least one, 
which for each parking lot is equal to 10 customers per 
hour (after an average service time of 6 minutes). Be-
cause λ / sμ = 37,5 / (5x 10) = 37,5 / 50 = 0,75 <1 there 
is convergence in equilibrium mode and we can proceed 
to the calculations.
So, for the current A mode, in equilibrium mode, using 
the formulas for the M / M / s system, for λ = 37.5, μ = 10 
and s = 5, we get the following system M / M / s, for λ = 
37.5, μ = 10 and s = 5, we get the following:
First we calculate the probability P0 that is needed to 
calculate the LqA to follow. So it is :

 = 0.018681 (i.e., about 1.87%).

• Average waiting system length: 

• Average number of clients in the system:

•  = 1,385367 + 37,5/10 = 5,135367 customers.

To calculate the total operating cost for A mode we have:
cw = € 3 per hour, cs = € 45 per hour, LA = 5,135367 and 
s = 5. So, TCA = WCA + SCA = cw x LA + cs x s, maxTC 
= 3 x 5,135367 + 45 x 5 = 240,4061 € per hour.
Prerequisites for the proposed mode B:
First of all, customers of all parking lots continue to arrive 
at an average average rate of λ = 37.5 per hour. Howev-
er, according to the scenario, 20% of them are custom-
ers of a conventional parking lot, so we actually split the 
initial average arrival rate in fi ve directions, those of the 
class of a conventional one, which is λ1 = λ x 0.20 = 37,5 
x 0,20 = 7,5 customers per hour and that of the custom-
ers of the other categories that are λ2 = λ
x 0,80 = 37,5 x 0,80 = 30 customers per hour. Obviously 
λ1 + λ2 = λ = 37.5.
So we have a service system consisting of fi ve paral-
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lel, simultaneously operating subsystems, with the same 
queue each, but with a common source of customers 
and a common total arrival rate of λ = 37.5, but split into 
fi ve queues, each of which has the same arrival rate. 
Each subsystem is M / M / 1 type with λ1 = 7,5 and μ1 
= 8 (after an average of 7,5 minutes is required for each 
customer in this category). In the fi rst case, λ / μ1 = 7,5 / 
8 <1. Consequently, there is convergence in equilibrium 
in the fi ve parallel subsystems of the B mode of opera-
tion so we can continue with the calculations.
Thus, for the B1 subsystem in equilibrium mode, using 
the formulas for the M / M / 1 system, for λ1 = 7,5 and μ1 
= 8, we get the following:
• Average waiting subsystem length

• Average number of customers, subsystem B1:

  15 customers.

While, to calculate the total operating cost for B mode, 
we have:
• For Subsystem B1:
cw = € 3 per hour, cs = 45 € per hour, L1 = 15 and s = 
1. So, TCB1 = WCB1 + SCB1 = cw x L1 + cs x s, hence 
TCB1 = 3 x 15 + 45 x 1 = 90 € per hour.
For all fi ve, the same car park TCB = 5 × 90 = 450
Therefore, the total expected operating cost for Mode B 
is greater than the average cost of Mode A of approxi-
mately (approximately) 450-240,4061 = 209,539 € per 
hour.
But also in terms of service:
For A: Average queue length 1.385367
Average number of customers in system 5.135367
For B:
Average queue length = 5 × Average queue length of 
subsystem B1 = 5 × 14,0625 = 70,315
Average number of clients in the system = 5x2 Average 
number of customers, subsystem B1 = 5 × 15 = 75
Therefore, the ratio θ 

 %, showing the expected payout ratio
System A is:

and system B is :

θB= 93,51333333 %
that is   θA <θB.
It is overwhelming, therefore, with the superiority of the 
A mode of operation (automated system) versus the B 
mode of operation (conventional system).

CONCLUSION

The result of this mathematical analysis shows that the 
superiority of the automated parking system by the con-
ventional parking system is overwhelming. This happens 
because the operating cost of the automated system is 
much less than the operating cost of the conventional 
system, the average service time of each car is smaller 
than the automated system by the conventional system, 
so the people served are more of the same time and the 
waiting hours are less. Thus time and money are served.
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