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The generalized problem of eigenvalue and vectors for singular matrix beams is central in the class of problems of 
rational construction of computed spectral models of complex modular systems. Solving this problem provides an 
opportunity to solve these problems, what determined the relevance of this work. The design calculations of complex 
modular-modular systems have a multivariate character for ensuring their optimal characteristics due to variation 
within the permissible limits of the elastic-inertial parameters. In the general case such calculations acquire the char-
acter of structural-parametric synthesis, when the varied space is supplemented by corrective dynamic devices. The 
purpose of this article was to provide basic methods for carrying out these calculations. The approach based on the 
singular decomposition of characteristic matrices was taken as the basis of the research in this paper. This allowed 
the authors to propose a set of methods for solving this problem, adaptively taking into account the specifi city of the 
available input data. The theoretical signifi cance of the work lies in the development of the modern mathematical and 
algorithmic apparatus of singular matrix beams, and practical in developing a scientifi c and methodological basis for 
solving a corresponding class of applied problems of the dynamics of mechanical and electromechanical systems, 
for equivalent mathematical and simulation modeling of systems of this class. 
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INTRODUCTION

For a wide range of applied control problems in complex 
technical systems related to the study of characteristics 
and the fi nding of optimal computational structures of all 
possible dynamic systems in engineering, seismology, 
oceanography, quantum chemistry, modern signal pro-
cessing models and in many other fi elds of knowledge, 
the generalized problem of eigenvalues in the form of 
a solution of the spectral equation  for 
a symmetric real matrix beam  usually plays the 
role of a central computational procedure for the solved 
problems [01, 02]. Moreover, in most typical cases one 
of the beam arrays or some linear combination of them 
is positively determined. In such cases, the generalized 
problem (1) is confi dently solved with the use of modern 
high-quality software implemented in the MATLAB sys-
tem, which incorporates advanced development experi-
ence and actual computer implementation of reliable and 
effi cient numerical methods.
The novelty of the proposed approach to the generalized 
solution of the symmetric eigenvalue problem for a spec-
tral equation of a given form consists in considering such 
a solution as a central computational procedure on the 
basis of the corresponding real, singular matrix beam.
The originality of the solution method proposed by the 
authors is to realize some preliminary structuring of the 
initial problem of determining the eigenvalues for the 

spectral equation, with the goal of exhausting the total 
zero-space of the calculated matrix beam.

EXPERIMENTAL BASE

In applied problems of the dynamics of mechanical and 
electromechanical systems, the rational construction of 
computed spectral models of complex aggregate-modu-
lar systems is based on the use of standardized spectral 
characteristics of individual building modules. In such 
cases, the global computational model of the object un-
der study takes the form of a non-free dynamical system 
with positional links. Similarly, the estimated situation in 
the study of seismic resistance of complex multi-compo-
nent building objects. As a potential sample for research, 
complexes of heterogeneous structures, nodes of engi-
neering networks from several components or subsys-
tems, etc., can also act.
The design calculations of these systems, as a rule, 
have a multi-variant character for ensuring optimal char-
acteristics of the systems being created due to variation 
in the allowed elastic-inertial parameters. In the general 
case, such calculations acquire the character of structur-
al-parametric synthesis, when the varied space is sup-
plemented by correlating dynamic devices.
With the apparent dissimilarity of the problems of the fi rst 
and second kinds, their model interpretation in the study 
of spectral characteristics leads to dynamical models of 
the same structure.
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MATERIALS AND METHODS

METHOD

The spectral problem for these systems in the most gen-
eral situation can be represented as a generalized eigen-
value problem:

                          

for a singular matrix beam having the following structure:

where  and  are – the diagonal and the unit matrix;   
 and  are – matrices that are Hermitian conjugate in 

the general case or symmetric in real problems.
Dimensions of submatrices in the block structure of a 
quasi-elastic matrix   are defi ned as follows:

                                            

The considered beam structure  in the general 
case corresponds to a similar transformation of the start-
ing computational model of the discrete-continuous dy-
namical system as a result of the spectral decomposition 
of the initial inertial matrix of the model, [01].
The generalized eigenvalue problem for a symmetric 
beam in the form (2) is in principle more diffi cult than 
the standard problem, since phenomena that substan-
tially complicate the localization of the eigen pairs of 
the matrix beam can take place. One such phenome-
non is generated by the singularity of the beam, which 
consists in the fact that the characteristic equation of 
the beam is satisfi ed for any value of the characteristic 
exponent. Most often the singularity of a matrix beam 
is due to the fact that its components have common 
zero-vectors X such that . Such 
vectors are in fact the eigenvectors of the pencil, and 
any number will be an eigenvalue for them. The uncer-
tainty of the intrinsic spectrum of the beam generated 
by this phenomenon dictates the necessity of a special 
initial stage of the analysis of any beam. At this stage, 
the total zero-space of the matrix pair of the beam is 
sought and then excluded from the computational model. 

Yan Ivakin - Application of singular matrix beams in the symmetrical problem of defi nition of eigenvalues

1)
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3)

Theoretically, this is done by narrowing the beam to the 
so-called invariant subspace.
In practice, there is also a danger that the beam  
has vectors that are almost annihilated by both beam 
matrices. In calculations in a discrete computing envi-
ronment, this leads to the fact that standard programs 
for solving the generalized eigenvalue problem can 
calculate some ill-conditioned eigenvalues with patho-
logical properties. These eigenvalues are not only hy-
persensitive to perturbations of the beam matrices, but 
their presence in the spectrum signifi cantly lowers the 
stability of the computational scheme in determining oth-
er eigenvalues. Mathematically, in the exact arithmetic of 
the beam matrices, in the case under consideration there 
is no common zero-space. In a practical procedure, for a 
reliable determination of the eigen pairs of a beam, it is 
also necessary at fi rst to get rid of the "almost-common" 
zero-space of the beam matrices, setting for this purpose 
the corresponding criterion for smallness for spectral ex-
pansions.
Thus, the eigenvalue problem under consideration re-
quires a special approach, and the use of standard soft-
ware is possible only after preliminary structuring of the 
initial model in order to exhaust the common zero-space 
of the calculated matrix beam.
The solution of the task can be accomplished in two 
ways. One of them uses the apparatus of singular matrix 
decomposition, the other - "bordering" the structuring of 
the calculated beam in combination with an effective al-
gorithm for solving the generalized eigenvalue problem 
of a bordered beam.
Let us consider the fi rst way of solution [03]. In what fol-
lows we use the following notation:

             

Where  – the Hermitian conjugate matrix for  .
We carry out the orthogonal transformation of the coordi-
nates of the model (1)

and the corresponding beam  transformation:

     

4)

5)

6)
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where         

 

  and  U and V are left and right singular ma-
trices for the submatrix, which are orthonormal modal 
matrices for symmetric products  re-
spectively;  – the diagonal  matrix of the sin-
gular numbers of the submatrix  , which are positive 
square roots of non-zero eigenvalues of the matrices 

.
If the submatrix  has an incomplete rank: 

 , its singular expansion takes the form:

                                        

where  the diagonal matrix of the order  of non-ze-
ro singular numbers of the matrix  of rank   .
In the general case, bearing in mind the possibility of the 
existence of vectors that are almost annihilated by both 
beam matrices, it is advisable to represent the matrix  
in the form . Here k is the user 
criterion of smallness, which allows us to accept  
and consider the transformed submatrix  in the form 
(8). The matrix  will contain zero singular numbers if 
the submatrix  has an arithmetically exact incomplete 
rank.
In accordance with the factorization (8) for the  sub-
matrix of the transformed beam (7), it is expedient to rep-
resent as follows:

                         

The submatrices involved in these expressions are char-
acterized by the following dimensions:

 

7)

8)

9)

10)

In accordance with the accepted block representation of 
matrix submatrices  , the matrix spectral equation of 
the transformed beam  is represented in the fol-
lowing segmented form

                

The form (11) of the spectral equation of the transformed 
beam  can be called canonical for singular beams 
with a common zero-space for the matrix components of 
the beam.
In the case, the beam matrices  have a common 
dimension zero space  , which generates an in-
fi nite set of eigenvalues. Indeed, because of the zero 
fringing of the matrices of the beam for each vector of 
the form:

where  is the unit  component vector,
 , any number is an eigenvalue.

Thus, the beam  , to which the spectral equation 
of the form (11) corresponds, is singular. In the work 
program, to solve the generalized eigenvalue problem, 
there must be a deduction branch, which in this situa-
tion exhausts the total zero-space of the matrices of the 
calculated beam. In the case, this means that the fi fth 
block rows and the column in the expressions (11) for the 
matrices   and  must be discarded. After this, solving 
equations (11) from below upwards, we obtain:

     

It follows from the expression in the third line of system 
(13) that  the fi nite eigenvalues of a symmetric 
computational beam  can be found as a result 
of solving the standard eigenvalue problem for a sym-
metric matrix . The eigenvectors  of the 
leading block   segment of the canonical shape of 
the beam corresponding to these values according to the 

11)

12)

13)
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dependences (13) have the form

  

According to the beam segmentation, in the intermediate 
(7) and canonical (11) forms, the block components of 
the eigenvectors of these forms are related by the fol-
lowing relations

with .

We represent singular matrices U and V in block form:
                         

Then the transformation of the eigenvectors  of the 
canonical form (11) into the eigenvectors of the original 
beam (2) can be performed by formulas:

         

where  and  are determined according to the depen-
dences (13).
If the submatrix  in the block factorization of the pen-
cil has full rank, then the canonical form of the spectral 
equation for the beam  will be adequate to the 
singular leading block 4x4 segment of equation (11), in 
which a diagonal matrix  with order  will participate 
in the diagonal matrix  with order . Symbolic depen-
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14)

15)

16)

17)

dencies (13) and (14) will retain their appearance if they 
replace the name  with a name .
In the case, the eigenvalues of the calculated beam are 
determined as a result of solving the standard eigenval-
ue problem for a symmetric matrix  . The 
transformation of the eigenvectors of the nonsingular ca-
nonical form of the pencil into eigenvectors of the original 
beam is realized in the form:

                                           

METHODOLOGY

Let us consider the second way of solving this problem, 
as some derivative technique from the above described 
method. In this case, it is expedient to represent the 
structurization of the calculated matrix beam  after 
the exhaustion of the common zero-space in the form:

where  – in the general case the degenerate diagonal 
matrix, some of whose elements or all of its elements 
are zero.
Let us carry out a similar transformation of the beam un-
der consideration corresponding to the orthogonal coor-
dinate transformation  :

   

where  – the modal matrix of the leading submatrix  
of n order.
The characteristic matrix K of the spectral equation of the 
transformed beam  will have the form:

                  

where  – the diagonal ma-
trix of eigenvalues of the leading submatrix  

18)

19)

20)

21)
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The matrix K is a fringed diagonal  
with a  m-ordered fringing, . The structural key 
of this matrix is the matrix pair 

                                

which corresponds to a characteristic matrix with one-di-
mensional fringing.
In expression (22), the bordering parameters of the matrix 

 have the following content:  – 
a scalar that is different from zero or equal to zero, de-
pending on the features of the modeled system.
The characteristic matrix  , using the Gaussian 
factorization for the triangular expansion, can be repre-
sented by the following dependences:

  
           

In accordance with the obtained dependences, the di-
agonal elements  of the diagonal matrix  in the 
congruent representation of the matrix  can be 
written in the form

                          

On the basis of Sylvester's law of inertia of a symmetric 
matrix, taking into account Weyl's theorem on the conti-
nuity of the eigenvalues of such a matrix, we can state 
that the number of negative signs of the terms of the se-
quence  according to expressions 
(24) at the current value  is equal to the number of 
eigenvalues of the matrix beam  that are smaller 
than . In other words, the sequence  
can be regarded as a reference sign series for the spec-
trum  divisor of the matrix beam  : the 
number of negative elements  on the main diagonal 
of the matrix  is the number of eigenvalues of the 
beam  that are less than  .
The effi ciency of the process of localization of the ei-
genvalues of the beam  can be substantially in-

22)

23)

24)

creased if one takes into account the singularities of the 
characteristic equation of this beam

                                 

It follows from (25) that equation (25) has n for  
and  for  roots , which are strictly separated 
by the eigenvalues  of the leading submatrix N of the 
beam :

Conditions (26) make it possible to effectively localize 
the eigenvalues of the beam  along a parallel 
computational scheme simultaneously in n or in  
isolation intervals in accordance with expressions (26). 
In this case, the divisor of the beam spectrum  is 
expediently used in the binary modifi cation, as a binary 
indicator :

                                

The eigenvalue  in the simplest computational scheme 
is localized in the interval of the length  of the 
k steps of the iteration process, realized by the scheme 
of dividing the segment in half. In the body of the corre-
sponding work cycle at each j-step, the boundaries of 
the current isolation interval  for  are defi ned 
as follows:

                

where  – the approximation of the eigenval-
ue   and the boundary of its isolation at the  step of 
the iterative process under consideration.
In the general case, instead of the dichotomic scheme 
considered, localization of the eigenvalues of the beam 

25)

26)

27)
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use more effi cient known procedures [02].
The calculation of the eigenvectors of the beam 

  can be constructed on the basis of explicit 
expressions for the components  of the eigenvector 

               

It can be shown that in special situations associated 
with the presence of multiple eigenvalues in the beam 

, the beam structure makes it possible to con-
struct effective and well-conditioned parallel computa-
tional schemes for solving the problem of its eigenvalues 
and vectors [01].
The general algorithm for solving the eigenvalue prob-
lem and the matrix-ray vectors  of the form (19) is 
realized as a recursive sequence of corresponding prob-
lems for beams  of the form (22), accompanied 
by a consecutive exhaustion of the matrix bordering of 
the characteristic matrix K of the beam  [01].
As an illustrative example, let us consider a solution us-
ing the method described above for the problem asso-
ciated with calculating the spectral characteristics of a 
conservative compound dynamical system with concen-
trated parameters, composed of three subsystems.
The vectors of the generalized coordinates of the sub-
systems are taken in the form:
 

Conservative dynamic models of subsystems can be 
represented in the form
 

where    

 
 
 

286
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The reduced values of the quasi-inertial parameters of 
the nodes and the quasi-elastic parameters of the sub-
systems are dimensionless, corresponding to certain 
accepted values of the quasi-inertial and quasi-elastic 
constants of the calculated dynamic system.
The global system is formed as a connected ensemble of 
the considered subsystems as a result of superposition 
of the following links of two types:

• rigid coupling of inertia units 2, 5 and 8
                                     

• conjugation of inertial nodes 1, 7 and 3, 6 by elastic 
connections with dimensionless quasi-elastic coeffi -
cients, respectively  ;  

                           

where   and  – the deforma-
tions of these elastic joints.
Considering the global system as a non-free dynamical 
system subordinated to positional constraints of the form 
(1) and (2), we write the differential equations of motion 
of the unperturbed global system in a Lagrangian form 
with multipliers

       

where   

- indefi nite 

Lagrange multipliers having the meaning of the reac-
tions of the corresponding bonds,  – the symbol of 
the direct sum of the matrices.

30)

31)

32)
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Using the extended vector  of redundant generalized 
coordinates, the conservative dynamic model of the 
global system under consideration can be represented 
in the following matrix-vector form:

                                       

  
 
 

        

O2 and O4  zero matrices of orders 2 and 4.
Numerical versions of the matrices M and G taking into 
account the elastic-inertial characteristics of the subsys-
tems and the constraint equations (1) and (2) are ob-
tained in the form

 

 

33)

We normalize the matrix Mr of the model (4) by trans-
forming the coordinates in the form

In the coordinate space X model (4) will have the form

where 
 

 
 
 

Finding the solution of the differential equation (35) in 
the form  leads to the necessity of solving the 
generalized eigenvalue problem for the matrix beam 

 
                                          

where  – is the proper pair of the beam.
The matrix beam  has the structure of a singu-
lar matrix beam (2) and is characterized by the following 
numerical content of its components

 

34)

35)

36)



Journal of Applied Engineering Science  Vol. 16, No. 2, 2018
ISSN  1451-4117 

288

Yan Ivakin - Application of singular matrix beams in the symmetrical problem of defi nition of eigenvalues

 

Using the standard program svb of the MATLAB system, 
we fi nd the matrix components of the singular decompo-
sition of the submatrix  
where U,V – the left and right singular matrices of the 
submatrix  ; S – syngular core of the submatrix :

 

 

 

We defi ne the content leading submatrix  of the matrix 
S in the form:

 
Following the dependences (4) and (5), we perform the 
transformation of the coordinates of the model (35) by 
the formula:

                    37)

and we represent this model in the form:
                                               

where 
 

The numerical value of the matrix G is obtained in the 
form

 

The submatrix  of the model under consid-
eration has an incomplete rank, which generates a com-
mon zero-space for the components of the calculated 
matrix beam (G, M), which should be excluded. This ex-
ception occurs as a result of deleting the last row and the 
last column of the matrices G and M. The corresponding 
transformation of the model (38) is determined by the 
dependencies:

                                       

38)

39)
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The singular spectral analogue of the conservative mod-
el (39) will have the form:

                                            

where  – the intrinsic pair of the matrix beam 
 

The numerical fi elds of the obtained components of 
the matrix beam  are segmented, following the 
scheme (12)

 
  

In accordance with the segmentation of the matrix beam 
, the symbolic representation of the spectral 

equation (40) is taken in the form:
         

where  – the tuples of the eigenvector Z 
that are structurally consistent with the matrix beam (G, 
M) segmentation scheme.
Solving the matrix equations corresponding to the four 
horizontal segments of the system (40), from the bottom 
to the top, we obtain

40)

41)

It follows from the expression in the third line of system 
(42) that the 7 fi nal eigenvalues of a symmetric calcu-
lated beam  can be found as a result of solving 
the standard eigenvalue problem for a symmetric matrix 

 In accordance with the segmentation of 
the matrix G performed, the numerical value of the matrix 
A is defi ned as

 

Solving the standard problem of eigenvalues using the 
standard program MATLAB, we fi nd the matrix   of eigen-
values and the modal matrix  of the matrix A:

             

The eigenvalues of the matrix A are the eigenvalues of 
the model (38) and the original singular dynamic model 
(33).
The singular modal matrix  of the matrix beam  
of the model (40) can be defi ned as the vertical concate-
nation of four matrices  related to each oth-
er by the same relations as the tuples  
of the eigenvector Z according to the relations (42):

 

42)
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The modal matrix  of the singular matrix beam  
of the calculating model (33), taking into account the 
transformations of the coordinates of the model (33), 
performed in accordance with expressions (34), (38), 
and (39):

 

The modal transformation of the original computational 
model, accompanied by the transformation of its singular 
matrix beam  in the form

leads the design model to the normal form with a diago-
nal matrix beam:

 
  

EXPERIMENT

As an experiment or a control calculation, we construct 
a solution of the generalized eigenvalue problem for a 
symmetric matrix beam  corresponding to the 
differential equation of motion of the dynamical system 
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44)

in question when it is schematized as a free system. The 
numerical values of the beam components  in 
accordance with the equations of constraints (30) and 
(31) can be represented in the form

  

 

The matrix of eigenvalues  and the modal matrix  of 
the beam  are calculated by the standard pro-
gram of the system MATLAB 

  
        

Comparison of the values  obtained  according 
to the expressions (45), (46) and the values  ac-
cording to expressions (44), (43), taking into account the 
equations of constraints (30) and (31), indicates a cor-
rect coincidence of these values.

CONCLUSIONS

The solution of the generalized problem of eigenvalues 
and vectors for singular matrix beams opens new hori-
zons for the application of modern mathematical-ana-
lytical methods in the fi eld of multicomponent systems 
with a complex dynamic structure. It is obvious that the 
promising areas of development presented in this article 
are methods for introducing soft calculations, fractals, 
methods of modern mathematical topology, mathemat-
ical probability theory, theory of possibilities, etc. into 
the appropriate mathematical and software applications. 
The introduction of these applications into a mathemat-
ical apparatus solutions of research problems similar to 
those described in this article is in demand and has been 
considered in a number of works, examples of which, 
when edeny in [04-19].
The development and justifi cation of the concretized 
interpretations of these methods for solving the gener-
alized problem of eigenvalues and vectors for singular 
matrix beams for new subject domains of investigation 
constitutes the essence of further work on the devel-

45)

46)
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opment of the reduced mathematical apparatus. At the 
same time, today we can state a broad perspective and 
applied applicability of this approach to the development 
of scientifi c and methodological tools for analyzing com-
plex multi-component objects.
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