DOI: 10.5937/jaes0-25010
This is an open access article distributed under the CC BY 4.0

Volume 18 article 738 pages: 631 - 636
Wind energy is one solution to overcome the energy problem in Indonesia. This study aimed to analyze the effect of
cup diameter on the power performance of an HC-type vertical axis wind turbine (VAWT). The wind turbine used a
combination of an H-type Darrieus wind turbine and a type-C rotor VAWT. The Darrieus HC-rotor wind turbine blade
has a height H = 800 mm and diameter D = 800 mm with C-rotor variations on the tip with diameters of 76,2, 101,6,
and 152,4 mm. The wind tunnel used an electric motor with a power of 1 HP (740 Watt) and 1400 rpm connected to
a fan. The variation of wind speed was set to 2, 3, 4, 5, 6 and 7 m/s. The results showed that: (a) the highest rotation
speedal speed was achieved by the HC-rotor diameter of 76,2 on 105 rpm with a wind speed of 7 m/s; (b) the highest
value of the coefficient of power (Cp) is achieved by the HC-rotor diameter of 101,6mm (c) the highest value of the
coefficient of torque (Ct) is achieved with the HC-rotor diameter of 152,4mm (d) the Darrieus HC-rotor wind turbine
is suitable to be used in tropical regions that have low wind speeds. This result provides important information about
the effect of the C rotor radius on the performance of HC-rotor Darrieus wind turbine blade vertical axis.
1. Aleman-Nava, G. S., Casiano-Flores, V. H., Cardenas- Chavez, D. L., Díaz-Chavez, R., Scarlat, N., Mahlknecht, J., Dallemand, J. F., Parra, R. (2014). Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140-153. https://doi.org/10.1016/j. rser.2014.01.004 [DOI]
2. Mikhail, A. (1981). Wind power for developing nations. Solar Energy Research Institute, California. 3. Hasan, M. H., Mahlia, T. M. I., Nur, H. (2012). A review on energy scenario and sustainable energy in Indonesia. Renewable and Sustainable Energy Reviews, vol. 16, 2316-2328. https://doi.org/10.1016/j. rser.2011.12.007 [DOI]
3. Hasan, M. H., Mahlia, T. M. I., Nur, H. (2012). A review on energy scenario and sustainable energy in Indonesia. Renewable and Sustainable Energy Reviews, vol. 16, 2316-2328. https://doi.org/10.1016/j. rser.2011.12.007 [DOI]
4. Soeripno, M. S., Ibrochim, M., Widodo, T. S. (2009). Analisa potensienergiangin dan estimasienergi output turbinangin di Lebak Banten. Jurnal Teknologi Dirgantara, vol. 7, 51-59, from http://jurnal.lapan. go.id/index.php/jurnal_tekgan/article/view/181/157, accessed on 27 April 2019.
5. Tjiu, W., Marnoto, T., Mat, S., Ruslan, M. H., Sopian, K. (2015). Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renewable Energy, vol. 75, 50-67. from https://doi.org/10.1016/j.renene.2014.09.038 [DOI]
6. Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., Krishna, V. H. (2016). A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56, 1351-1371. https://doi.org/10.1016/j. rser.2015.12.027 [DOI]
7. Ali, M. H. (2013). Experimental comparison study for savonius wind turbine of two & three blades at low wind speed. International Journal of Modern Engineering Research, vol. 3, 2978-2986.
8. Akwa, J. V., Vielmo, H. A., Petry, A. P. (2012). A review on the performance of Savonius wind turbines. Renewable and Sustainable Energy Reviews, vol. 16, 3054-3064. https://doi.org/10.1016/j. rser.2012.02.056 [DOI]
9. Toja-Silva, F., Colmenar-Santos, A., Castro-Gil, M., (2013). Urban wind energy exploitation systems: Behaviour under multidirectional fl ow conditions—Opportunities and challenges. Renewable and Sustainable Energy Reviews, vol. 24, 364-378. https://doi. org/10.1016/j.rser.2013.03.052 [DOI]
10. Tescione, G., Ragni, D., He, C., Ferreira, C. S., van Bussel, G. J. W. (2014). Near wake fl ow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy, vol. 70, pp. 47-61. https://doi.org/10.1016/j.renene.2014.02.042 [DOI]
11. Ferreira, C. S., van Kuik, G., van Bussel, G., Scarano F. (2009). Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids, vol. 46, 97-108. https://doi.org/10.1007/s00348- 008-0543-z [DOI]
12. Rezaeiha, A., Kalkman, I., Blocken, B. (2017). CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy, vol. 107, 373-385. https://doi.org/10.1016/j. renene.2017.02.006 [DOI]
13. Erwin, E., Surjosatyo, A., Sulistyo, N. J., Meurahindra, M. T., & Soemardi, T. [2018]. The effect of hybrid savonius and darrieus turbine on the change of wake recovery and improvement of wind energy harvesting. Journal of Applied Engineering Science, 16(3), 416-423.
14. Serway, R. A., Jewett, J. W., Peroomian, V. (2014). Physics for scientists and engineers. Cengage Brooks/Cole, Boston.
15. Johnson, G. L. (1985). Wind energy systems. Prentice- Hall, Englewood Cliffs.
16. Kusiak, A., Zheng, H., Song, Z.(2009). On-line monitoring of power curves. Renewable Energy, vol.34, 1487-1493. https://doi.org/10.1016/j. renene.2008.10.022 [DOI]
17. Fox, R. W. McDonald, A. T., Pritchard, P. J., Leylegian, J. C. (2012). Fluid mechanics. John Wiley, Hoboken.
18. Adaramola, M. (2014). Wind turbine technology: principles and design. Taylor and Francis, Hoboken.