Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-33614 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 947 pages: 408-419

Abu Bakarr Momodu Bangura*
Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Ridho Hantoro
Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Ahmad Fudholi
Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia; Research Centre for Electrical Power and Mechatronics, Indonesia Institute of Sciences (LIPI), Bandung, Indonesia

Pierre Damien Uwitije
Mechanical & Energy Engineering, University of Rwanda

A transient mathematical model has been evaluated to determine the principle of a solar crop dryer for drying vegetables (onion). Considering the meteorological conditions of Freetown (Latitude 8.4840 N, Longitude -13.2300 W), the model was developed to determine air temperatures and other operational parameters of the drying system for a day of March 21st. However, the investigated system had effectively reduced the drying process of onion. The developed double-pass solar air collector system showed a low-temperature output in the morning hours and displayed high-temperature results in the afternoon hours. From 8:00 to 16:00, the solar collector generates fluid output temperatures above 50 0C, with a peak value of 96 0C occurred at 12:00. The influence of the mass flow rate on the system's thermal efficiency was investigated. It was noticed that for a certain solar radiation value, an increased in the mass flow rate caused an exponential increased in the solar air collector thermal efficiency. Findings also revealed that an increased in the solar collector length led to a slightly decreased in the outlet air temperatures at a mass flow rate of 0.02 kg/s. The influence of increasing drying air temperatures and air velocity within the drying chamber reduces drying time significantly. The drying time for products dried in the first tray is lesser than for products dried in the subsequent trays, owing to temperature variations. The computation findings were verified to previous studies in the literature and observed to be strongly comparable.

View article

1. A. El-Beltagy, G. R. Gamea, and A. H. A. Essa, “Solar drying characteristics of strawberry,” J. Food Eng., vol. 78, no. 2, pp. 456–464, 2007, doi: 10.1016/j.jfoodeng.2005.10.015.

2. S. Prakash, S. K. Jha, and N. Datta, “Performance evaluation of blanched carrots dried by three different driers,” J. Food Eng., vol. 62, no. 3, pp. 305–313, 2004, doi: 10.1016/S0260-8774(03)00244-9.

3. O. Prakash and A. Kumar, “Historical review and recent trends in solar drying systems,” Int. J. Green Energy, vol. 10, no. 7, pp. 690–738, 2013, doi: 10.1080/15435075.2012.727113.

4. L. E. S. P. Agroalimentaires, M. Constantine, and F. Mentouri, “SIMULATION D ’ UN SECHOIR SOLAIRE INDIRECT A CONVECTION FORCEE POUR k Indices et exposants ach air chaud f pe paroi extérieure Cp mp ii ie n e vitre extérieure isolant intérieure isolant extérieure absorbeur tranche rayonnement vitre evaporatrice voute cé,” no. Décembre, pp. 57–62, 2016.

5. W. Mühlbauer, “Present status of solar crop drying,” Energy Agric., vol. 5, no. 2, pp. 121–137, 1986, doi: 10.1016/0167-5826(86)90013-6.

6. S. Bala, B. K and Janjai, “Solar drying of fruits , vegetables , spices , medicinal plants and fish : Developments and Potentials,” Int. Sol. Food Process. Conf. January 14- 16, 2009, Indore, India, pp. 1–24, 2009.

7. S. Misha, S. Mat, M. H. Ruslan, K. Sopian, and E. Salleh, “Review on the application of a tray dryer system for agricultural products,” World . Appl. Sci. J., vol. 22, no. 3, pp. 424–433, 2013, doi: 10.5829/idosi.wasj.2013.22.03.343.

8. A. K. Attkan, N. Kumar, and Y. K. Yadav, “Performance Evaluation of a Dehumidifier Assisted Low Temperature Based Food Drying System,” IOSR J. Environ. Sci. Toxicol. Food Technol., vol. 8, no. 1, pp. 43–49, 2014, doi: 10.9790/2402-08154349.

9. W. M. Miller, “Energy storage via desiccants for food/agricultural applications,” Energy Agric., vol. 2, no. C, pp. 341–354, 1983, doi: 10.1016/0167-5826(83)90029-3.

10. P. Catalano, F. Fucci, F. Giametta, and G. La Fianza, “A System for Food Drying Using Humidity Control and Low Temperature,” Agric. Eng. Int. CIGR J., vol. X, pp. 1–10, 2008.

11. S. Misha, S. Mat, M. H. Ruslan, and K. Sopian, “Review of solid/liquid desiccant in the drying applications and its regeneration methods,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 4686–4707, 2012, doi: 10.1016/j.rser.2012.04.041.

12. C. L. Hii, C. L. Law, and M. Cloke, “3116-3120.Pdf,” Determination of Effective Diffusivity of Cocoa Beans using Variable Diffusivity Model, vol. Journal of. pp. 3116–3120, 2009.

13. A. Matouk, M. El-Kholy, M. El-Sadany, and A. Abd - El-aziz, “Development and Evaluation of a Solar Dryer for Thin Layer Drying of Hayani Date,” J. Soil Sci. Agric. Eng., vol. 1, no. 6, pp. 517–532, 2010, doi: 10.21608/jssae.2010.74880.

14. M. A. Hossain, J. L. Woods, and B. K. Bala, “Simulation of solar drying of chilli in solar tunnel drier,” Int. J. Sustain. Energy, vol. 24, no. 3, pp. 143–153, 2005, doi: 10.1080/14786450500291859.

15. E. K. Akpinar, Y. Bicer, and C. Yildiz, “Thin layer drying of red pepper,” J. Food Eng., vol. 59, no. 1, pp. 99–104, 2003, doi: 10.1016/S0260-8774(02)00425-9.

16. P. D. Uwitije, R. Hantoro, M. Y. Nasri, and G. Nugroho, “Study and Simulation of A Solar System for Drying Purpose in Rwanda,” IOP Conf. Ser. Mater. Sci. Eng., vol. 462, no. 1, 2019, doi: 10.1088/1757-899X/462/1/012001.

17. Y. B. Chauhan and P. P. Rathod, “A comprehensive review of the solar dryer,” Int. J. Ambient Energy, vol. 41, no. 3, pp. 348–367, 2020, doi: 10.1080/01430750.2018.1456960.

18. O. Prakash, V. Laguri, A. Pandey, A. Kumar, and A. Kumar, “Review on various modelling techniques for the solar dryers,” Renew. Sustain. Energy Rev., vol. 62, pp. 396–417, 2016, doi: 10.1016/j.rser.2016.04.028.

19. L. M. Diamante and P. A. Munro, “Mathematical modelling of the thin layer solar drying of sweet potato slices,” Sol. Energy, vol. 51, no. 4, pp. 271–276, 1993, doi: 10.1016/0038-092X(93)90122-5.

20. C. Ratti and A. S. Mujumdar, “Solar drying of foods: Modeling and numerical simulation,” Sol. Energy, vol. 60, no. 3–4, pp. 151–157, 1997, doi: 10.1016/S0038-092X(97)00002-9.

21. L. Bennamoun, “Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers,” Renew. Sustain. Energy Rev., vol. 15, no. 7, pp. 3371–3379, 2011, doi: 10.1016/j.rser.2011.04.027.

22. S. Aboul-Enein, A. A. El-Sebaii, M. R. I. Ramadan, and H. G. El-Gohary, “Parametric study of a solar air heater with and without thermal storage for solar drying applications,” Renew. Energy, vol. 21, no. 3–4, pp. 505–522, 2000, doi: 10.1016/S0960-1481(00)00092-6.

23. D. Jain, “Modeling the system performance of multi-tray crop drying using an inclined multi-pass solar air heater with in-built thermal storage,” J. Food Eng., vol. 71, no. 1, pp. 44–54, 2005, doi: 10.1016/j.jfoodeng.2004.10.016.

24. D. Jain and R. K. Jain, “Performance evaluation of an inclined multi-pass solar air heater with in-built thermal storage on deep-bed drying application,” J. Food Eng., vol. 65, no. 4, pp. 497–509, 2004, doi: 10.1016/j.jfoodeng.2004.02.013.

25. O. V. Ekechukwu and B. Norton, “Review of solar-energy drying systems II: An overview of solar drying technology,” Energy Convers. Manag., vol. 40, no. 6, pp. 615–655, 1999, doi: 10.1016/S0196-8904(98)00093-4.

26. D. Jain, “Modeling the performance of the reversed absorber with packed bed thermal storage natural convection solar crop dryer,” J. Food Eng., vol. 78, no. 2, pp. 637–647, 2007, doi: 10.1016/j.jfoodeng.2005.10.035.

27. S. Timoumi, D. Mihoubi, and F. Zagrouba, “Simulation model for a solar drying process,” Desalination, vol. 168, no. 1–3, pp. 111–115, 2004, doi: 10.1016/j.desal.2004.06.175.

28. O. P. Dubey and T. L. Pryor, “A user oriented simulation model for deep bed solar drying of rough rice,” Renew. Energy, vol. 9, no. 1-4 SPEC. ISS., pp. 695–699, 1996, doi: 10.1016/0960-1481(96)88380-7.

29. A. Fudholi, K. Sopian, M. H. Ruslan, and M. Y. Othman, “Performance and cost benefits analysis of double-pass solar collector with and without fins,” Energy Convers. Manag., vol. 76, pp. 8–19, 2013, doi: 10.1016/j.enconman.2013.07.015.

30. A. Fudholi, M. H. Ruslan, and M. Y. Othman, “Mathematical Model of Double-Pass Solar Air Collector,” Latest Trends Renew. Energy Environ. Informatics. Proc. 7th Int. Conf. Renew. Energy Sources, pp. 279–283, 2013.

31. M. Fakoor Pakdaman, A. Lashkari, H. Basirat Tabrizi, and R. Hosseini, “Performance evaluation of a natural-convection solar air-heater with a rectangular-finned absorber plate,” Energy Convers. Manag., vol. 52, no. 2, pp. 1215–1225, 2011, doi: 10.1016/j.enconman.2010.09.017.

32. K. S. Ong, “Thermal performance of solar air heaters: Mathematical model and solution procedure,” Sol. Energy, vol. 55, no. 2, pp. 93–109, 1995, doi: 10.1016/0038-092X(95)00021-I.

33. E. M. Ali Alfegi, K. Sopian, M. Y. H. Othman, and B. Bin Yatim, “Mathematical model of double pass photovoltaic thermal air collector with fins,” Am. J. Environ. Sci., vol. 5, no. 5, pp. 592–598, 2009, doi: 10.3844/ajessp.2009.592.598.

34. C. T. Kiranoudis, Z. B. Maroulis, and D. Marinos-Kouris, “Drying kinetics of onion and green pepper,” Dry. Technol., vol. 10, no. 4, pp. 995–1011, 1992, doi: 10.1080/07373939208916492.

35. C. T. Kiranoudis, J. Dimitratos, Z. B. Maroulis, and D. Marinos-Kouris, “State Estimation in the Batch DryinG of Foods,” Dry. Technol., vol. 11, no. 5, pp. 1053–1069, 1993, doi: 10.1080/07373939308916882.

36. C. T. Kiranoudis, Z. B. Maroulis, and D. Marinos-Kouris, “Model selection in air drying of foods,” Dry. Technol., vol. 10, no. 4, pp. 1097–1106, 1992, doi: 10.1080/07373939208916497.

37. M. K. Krokida, V. T. Karathanos, Z. B. Maroulis, and D. Marinos-Kouris, “Drying kinetics of some vegetables,” J. Food Eng., vol. 59, no. 4, pp. 391–403, 2003, doi: 10.1016/S0260-8774(02)00498-3.

38. C. T. Kiranoudis, Z. B. Maroulis, E. Tsami, and D. Marinos-Kouris, “Equilibrium moisture content and heat of desorption of some vegetables,” J. Food Eng., vol. 20, no. 1, pp. 55–74, 1993, doi: 10.1016/0260-8774(93)90019-G.

39. A. Samara, S. De Oliveira, and Z. Ernesto, “NUMERICAL SIMULATION OF A HYBRID SOLAR DRYER FOR,” 1985.

40. L. Bennamoun and A. Belhamri, “Design and simulation of a solar dryer for agriculture products,” J. Food Eng., vol. 59, no. 2–3, pp. 259–266, 2003, doi: 10.1016/S0260-8774(02)00466-1.

41. D. Y. Goswami, Principles of Solar Engineering. 2015.

42. M. A. Karim, E. Perez, and Z. M. Amin, “Mathematical modelling of counter flow v-grove solar air collector,” Renew. Energy, vol. 67, pp. 192–201, 2014, doi: 10.1016/j.renene.2013.11.027.

43. P. Pascal, U. Canissius, B. Germain, T. Alphonse, and P. E. Alidina, “Study and Modelisation the Parameters of Plate Solar air Collector at Single Pass for Drying of Madagascar CocoaBeans,” no. 8, pp. 8–14, 2017.

44. L. Bennamoun and A. Belhamri, “Study of solar thermal energy in the north region of Algeria with simulation and modeling of an indirect convective solar drying system,” Nat. &Technology, vol. 4, no. December 2013, pp. 34–40, 2011.

45. I. T. Toǧrul and D. Pehlivan, “Modelling of drying kinetics of single apricot,” J. Food Eng., vol. 58, no. 1, pp. 23–32, 2003, doi: 10.1016/S0260-8774(02)00329-1.

46. L. Bennamoun and A. Belhamri, “Numerical simulation of drying under variable external conditions: Application to solar drying of seedless grapes,” J. Food Eng., vol. 76, no. 2, pp. 179–187, 2006, doi: 10.1016/j.jfoodeng.2005.05.005.