Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-41943 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1110 pages: 686-697

Minh-Thai Le
Faculty of Special Equipments, Le Quy Don Technical University, Hanoi, Vietnam

An-Le Van*
Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

Trung Thanh Nguyen
Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi, Vietnam

Xuan-Ba Dang
Department of Automatic Control, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam

The design configuration of the nozzle has a vital role in the performance measures of the machining processes. However, parameter optimizations are primary considerations of published works. This study optimizes nozzle design parameters to minimize environmental impacts and enhance the surface quality for the diamond burnishing (DB) operation. The performance measures considered are energy efficiency (ED), noise emission (NE), and the total height of profile roughness (Rt). The variables are the inner diameter (D), spraying distance (S), and pitch angle (P). The optimal Taguchi-based Bayesian regularized feed-forward neural network (TBRFFNN) was applied to propose performance models. The CRITIC approach is utilized to compute the weight values of responses, while the desirability approach (DA) is employed to select optimality. The observed results of the D, S, and P were 3.0 mm, 15 mm, and 45 deg., respectively. The ED was enhanced by 12.7%, while the Rt and NE were decreased by 24.4% and 9.1%, respectively, as compared to the original design parameters. The obtained outcomes could be utilized in the practice to boost technical characteristics. The developed optimizing approach could be employed to deal with optimization problems for different machining processes.

View article

1.      Sachin. B., Narendranath, S., Chakradhar, D. (2018). Experimental evaluation of diamond burnishing for sustainable manufacturing. Materials Research Express, vol. 5, no. 10, 106514. DOI:10.1088/2053-1591/aadb0a

2.      Sachin. B., Narendranath, S., Chakradhar, D. (2020). Application of desirability approach to optimize the control factors in cryogenic diamond burnishing. Arabian Journal for Science and Engineering, vol. 45, 1305–1317. DOI: 10.1007/s13369-019-04326-3

3.      Sachin. B., Narendranath, S., Chakradhar, D. (2019). Selection of Optimal Process Parameters in Sustainable Diamond Burnishing of 17-4 PH Stainless Steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, 219.

4.      Maximov, J.T., Duncheva, G.V, Anchev, A, P, et al. (2020). Smoothing, deep, or mixed diamond burnishing of low-alloy steel components-optimization procedures.  International Journal of Advanced Manufacturing Technology, vol. 106, 1917–1929. DOI: 10.1007/s00170-019-04747-2

5.      Maximov, J.T., Duncheva, G.V., Anchev, A, P, et al. (2020). Improvement in fatigue strength of 41cr4 steel through slide diamond burnishing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.  42, 197. DOI: 10.1007/s00170-019-04747-2 

6.      Maximov, J.T., Duncheva, G.V., Anchev, A, P, et al. (2022). Improvement in wear resistance performance of CuAl8Fe3 single-phase aluminum bronze via slide diamond burnishing. Journal of Materials Engineering and Performance, vol. 31, 2466-2478. DOI: 10.1007/s40430-020-02276-8 

7.      Maximov, J.T., Duncheva, G.V., Anchev, A, P, et al. (2021). Multi-objective optimization of the internal diamond burnishing process. Materials and Manufacturing Processes, vol. 37, no. 4, 428-436. DOI: 10.1080/10426914.2021.1981937

8.      Felhő, C., Varga, G. (2022). CAD and FEM modelling of theoretical roughness in diamond burnishing. International Journal of Precision Engineering and Manufacturing, vol. 23, 375–384. DOI: 10.1007/s12541-022-00622-5

9.      Duncheva, G.V., Maximov, J.T., Anchev, A.P. et al. (2022). Improvement in surface integrity of CuAl8Fe3 bronze via diamond burnishing. International Journal of Advanced Manufacturing Technology, vol. 119, 5885–5902 (2022). DOI: 10.1007/s00170-022-08664-9

10.   Duncheva, G.V., Maximov, J.T., Anchev, A.P. et al. (2022).  Enhancement of the wear resistance of CuAl9Fe4 sliding bearing bushings via diamond burnishing. Wear, vol. 510–511, 204491. DOI: 10.1016/j.wear.2022.204491

11.   Maximov, J., Duncheva, G., Anchev, A., et al. (2022). Effect of diamond burnishing on fatigue behaviour of AISI 304 chromium-nickel austenitic stainless steel. Materials, vol. 15, 4768. DOI: 10.3390/ma15144768

12.   Nguyen T.T., Le M.T. (2021). Optimization of internal burnishing operation for energy efficiency, machined quality, and noise emission. International Journal of Advanced Manufacturing Technology, vol. 114, 2115–2139. DOI: 10.1007/s00170-021-06920-y

13.   Nguyen T.T., Le M.T. (2021). Optimization of the internal roller burnishing process for energy reduction and surface properties. Strojniški vestnik – Journal of Mechanical Engineering, vol.  67, no. 4, 167-179. DOI: 10.5545/sv-jme.2021.7106

14.   Nguyen T.T., Nguyen T.A., Trinh Q.H. et al. (2022). Multi-performance optimization of multi-roller burnishing process in sustainable lubrication condition. Materials and Manufacturing Processes, vol. 37, no. 4, 407-427. DOI: 10.1080/10426914.2021.1962533

15.   Nguyen T.T., Le, V.A. (2022). Machining and optimization of the external diamond burnishing operation. Materials and Manufacturing Processes. DOI: 10.1080/10426914.2022.2072880

16.   Đinh V.D., Vu D.Q. (2022).  A mathematical model for thinning rate prediction of sheet double hydro-forming. Journal of Applied Engineering ScienceVol. 20, no. 3, 987-999. DOI: 10.5937/jaes0-35082 

17.   Buzauova, T., Turekhanov, B., Mateshov, A., et al. (2022). Planning and experimental studies of selection the optimal welding mode by the friction of fitting rods. Journal of Applied Engineering ScienceVol. 20, no. 3, 727-735. DOI: 10.5937/jaes0-35874

18.   Srinivas, D., Sharma, S., Gowrishankar., et al. (2022). Optimization and prediction of the hardness behaviour of LM4 + SI3N4 composites using RSM and ANN - a comparative study. Journal of Applied Engineering ScienceVol. 20, no. 4, 1214-1225DOI: 10.5937/jaes0-38109

19.   Hidayat, H.F., Setiawan, R., Dhelika, R., et al. (2022). Investigation of relative influence of process variables in a 10-kW downdraft fixed-bed gasifier with ann models. Journal of Applied Engineering ScienceVol. 20, no.3, 971-977 (2022)DOI: 10.5937/jaes0-34344