Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

DYNAMIC RESPONSE OF HIGH-POWER ULTRASONIC SYSTEM BASED ON FINITE ELEMENT MODELing OF PIEZOELECTRIC


DOI: 10.5937/jaes0-43529 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 2 article 1128 pages: 859-871

Viet Dung Luong*
Faculty of Mechanical Engineering, Thai Nguyen University of Technology, 3/2 street, Tich luong ward, Thai Nguyen City 251750, Vietnam

Pham Tuong Minh Duong
Faculty of Mechanical Engineering, Thai Nguyen University of Technology, 3/2 street, Tich luong ward, Thai Nguyen City 251750, Vietnam

Thi Bich Ngoc Nguyen
Faculty of Mechanical Engineering, Thai Nguyen University of Technology, 3/2 street, Tich luong ward, Thai Nguyen City 251750, Vietnam

Nhu Khoa Ngo
Faculty of Mechanical Engineering, Thai Nguyen University of Technology, 3/2 street, Tich luong ward, Thai Nguyen City 251750, Vietnam

Thi Hoa Nguyen
Faculty of Mechanical Engineering, Thai Nguyen University of Technology, 3/2 street, Tich luong ward, Thai Nguyen City 251750, Vietnam

Van Du Nguyen
Faculty of Mechanical Engineering, Thai Nguyen University of Technology, 3/2 street, Tich luong ward, Thai Nguyen City 251750, Vietnam

In this study, a new finite element model for ultrasonic welding equipment is proposed. This help to solve remaining issues such as element type selection for the numerical model, mesh size, and how to determine the parameters of piezoelectric materials. The obtained results clearly show the influence of element type and mesh size on resonance frequency and amplitude. Specifically, with a mesh size of 2 mm, it was concluded to be suitable for the model. For the C3D8 element (C3D8E), the computation time is reduced by 0.25 times compared to the C3D20R element (C3D20RE). After that, an experimental processing procedure is performed to evaluate the numerical simulation results. Specifically, the handling of signal noise when measuring a very small displacement at high frequencies of an ultrasonic vibrating device. Based on the confirmed finite element model, this model is extended to evaluate the influence of the load on the amplitude and resonant frequency of the ultrasonic welding system. The results show that when the load increases, the amplitude decreases while the resonant frequency increases. The results of this study can be applied to the design of ultrasonic vibration systems.

View article

This work was funded by the Ministry of Education & Training Vietnam (grant number B2020-TNA-02)

1.      B. Chandra Behera (2011), Development and Experimental Study of Machining Parameters in Ultrasonic Vibration-assisted Turning, fromhttp://ethesis.nitrkl.ac.in/4416/1/Development_and_experimental_study_of_machining_parameters_in_ultrasonic_vibration-assisted_turning.pdf

2.      A. C. Mathieson (2012), Nonlinear Characterisation Of Power Ultrasonic Devices Used In Bone Surgery, from http://theses.gla.ac.uk/3135/.

3.       X. Li, P. Harkness, K. Worrall, R. Timoney, and M. Lucas (2017) A Parametric Study for the Design of an Optimized Ultrasonic Percussive Planetary Drill Tool, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 64, no. 3, pp. 577–589, DOI: 10.1109/TUFFC.2016.2633319.

4.       Y. Yao, Y. Pan, and S. Liu (2020), Power ultrasound and its applications: A state-of-the-art review, Ultrason. Sonochem., vol. 62, DOI: 10.1016/j.ultsonch.2019.104722

5.      A. T. São-carlense, S. Carlos, S. P. Brazil, and D. Vandepitte (2007), Experimental and Finite Element Analysis of Composite, pp. 447–450

6.      M. Rezaei, M. Farzin, F. Ahmadi, and M. R. Niroomand, Design (2022), Analysis and Manufacturing of a Bone Cutting Ultrasonic Horn-Tool and Verification with Experimental Tests, Journal of Applied and Computational Mechanics, vol. 8, no. 2. 2022, 438–447, DOI: 10.22055/jacm.2020.31298.1904.

7.      O. N. Arani, A. Yaghootian, and S. Sodagar (2022), Investigation on the Crack Effect in the Cylinder and Matrix on the Backscattering Field Frequency Specifications using the Finite Element Method, Journal of Applied and Computational Mechanics, vol. 8, no. 2, pp. 448–455,DOI: 10.22055/jacm.2020.31700.1910

8.      M. Zarei, G. R. Faghani, M. Farzin, and M. Mashayekhi (2017), Investigation on the ultrasonic tube hydroforming in the bulging process using finite element method, Journal of Applied and Computational Mechanics, vol. 3, no. 4, pp. 251–257, DOI: 10.22055/jacm.2017.21852.1119

9.      O. N. Arani, M. Z. Salimabad, A. Yaghootian, and M. Kari (2023), Calculation of Backscattered Ultrasonic Waves Field from a Copper-clad Steel Rod Immersing in Water and Effect of Clad Corrosion and Interfacial Disbond between Clad and Rod Defects on this Field using the Finite Element Method, Journal of Applied and Computational Mechanics, vol. 9, no. 1, pp. 58–71, DOI: 10.22055/jacm.2021.38098.3172.

10.   S. A. Arhamnamazi, N. B. M. Arab, A. R. Oskouei, and F. Aymerich (2019), Accuracy assessment of ultrasonic C-scan and X-ray radiography methods for impact damage detection in glass fiber reinforced polyester composites, J. Appl. Comput. Mech., vol. 5, no. 2, pp. 258–268, DOI: 10.22055/JACM.2018.26297.1318

11.   X. Li, M. Lucas, and P. Harkness (2018), Full and Half-Wavelength Ultrasonic Percussive Drills, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 11, pp. 2150–2159, DOI: 10.1109/TUFFC.2018.2867535

12.   D. A. DeAngelis, G. W. Schulze, and K. S. Wong (2015), Optimizing Piezoelectric Stack Preload Bolts in Ultrasonic Transducers, in Physics Procedia, vol. 63, pp. 11–20, DOI: 10.1016/j.phpro.2015.03.003.

13.   M. V. Guiman and I. C. Roca (2017), A New Approach on Vibrating Horns Design, Shock and Vibration, vol. 2017, DOI: 10.1155/2017/8532021.

14.   K. Nakamura (2020), Evaluation methods for materials for power ultrasonic applications, Japanese Journal of Applied Physics, vol. 59, DOI: 10.35848/1347-4065/ab9230

15.    E. Evaluation, O. F. Indicators, O. F. Nonlinearity, F. O. R. Use, I. N (2002). Ultrasound, and T. Characterizations, Experimental Evaluation of Indicators of Nonlinearity, vol. 28, no. 02, pp. 1509–1520

16.    R. Marat-Mendes, C. J. Dias, and J. N. Marat-Mendes (2002), A comparative study of piezoelectric materials using smart angular accelerometers, in Key Engineering Materials, vol. 230–232, pp. 181–184,DOI: 10.4028/www.scientific.net/kem.230-232.181

17.    S. Sherrit, B. P. Dolgin, Y. Bar-Cohen, D. Pal, J. Kroh, and T. Peterson (1999), Modeling of horns for sonic/ultrasonic applications, in Proceedings of the IEEE Ultrasonics Symposium, vol. 1, pp. 647–651, DOI: 10.1109/ultsym.1999.849482

18.    H. Al-Budairi, M. Lucas, and P. Harkness (2013), A design approach for longitudinal–torsional ultrasonic transducers, Sensors Actuators A Phys., vol. 198 , pp. 99–106, DOI: 10.1016/j.sna.2013.04.024.

19.    M. Baraya, Mohamed Y.; Hossam (2020), Design of an electromechanical system for measuring and monitoring micro-ultrasonic amplitude of Langevin transducer, International J. Adv. Manuf. Technol, DOI: 10.1007/s00170-020-04922-w.

20.    V. D. Luong, A. S. Bonnin, F. Abbès, J. B. Nolot, D. Erre, and B. Abbès (2021), Finite Element and Experimental Investigation on the Effect of Repetitive Shock in Corrugated Cardboard Packaging, J. Appl. Comput. Mech., vol. 7, no. 2, pp. 820–830, DOI: 10.22055/jacm.2020.35968.2771

21.    X. Chen, Y. Yin, Q. Hou, L. Jin, and X. Li (2010), The simulation and structural optimization of ultrasonic transducer, 2010 2nd Int. Conf. Ind. Inf. Syst. IIS 2010, vol. 1, pp. 330–333, DOI: 10.1109/INDUSIS.2010.5565844

22.    I. Jovanović, D. Mančić, U. Jovanović, and M. Prokić (2017), A 3D model of new composite ultrasonic transducer, J. Comput. Electron., vol. 16, no. 3, pp. 977–986, DOI: 10.1007/s10825-017-1000-0

23.    Q. Xu, A. Gao, Y. Li, and Y. Jin (2022), Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester, Micromachines, vol. 13, no. 5, DOI: 10.3390/mi13050675

24.    M. Liu (2012), Finite Element Analysis of the Contact Deformation of Piezoelectric Materials, Theses and Dissertations--Chemical and Materials Engineering, from http://uknowledge.uky.edu/cme_etds/15

25.    A. Abdullah and A. Pak (2008), Correct prediction of the vibration behavior of a high power ultrasonic transducer by FEM simulation, International Journal of Advanced Manufacturing Technology, vol. 39, no. 1–2, pp. 21–28, DOI:10.1007/s00170-007-1191-9.

26.    J. T. Zhao, L. P. Ning, Z. M. Jiang, and Y. L. Li (2021), Design and finite element analysis of longitudinal vibrating stepped ultrasonic horn, Journal of Physics: Conference Series, vol. 2029, no. 1, DOI: 10.1088/1742-6596/2029/1/012056.

27.    A. Abdullah, M. Shahini, and A. Pak (2009), An approach to design a high power piezoelectric ultrasonic transducer, J. Electroceramics, vol. 22, no. 4, pp. 369–382, DOI: 10.1007/s10832-007-9408-8.

28.    D. Hanson, T. P. Waters, D. J. Thompson, R. B. Randall, and R. A. J. Ford (2007), The role of anti-resonance frequencies from operational modal analysis in finite element model updating, Mech. Syst. Signal Process., vol. 21, no. 1, pp. 74–97, DOI: 10.1016/j.ymssp.2006.01.001.

29.    J. Kim and J. Lee (2020), Parametric study of bolt clamping effect on resonance characteristics of langevin transducers with lumped circuit models, Sensors (Switzerland), vol. 20, no. 7, pp. 1–9, DOI: 10.3390/s20071952

30.    I. C. Rosca, M. I. Pop, and N. Cretu (2015), Experimental and numerical study on an ultrasonic horn with shape designed with an optimization algorithm, Appl. Acoust., vol. 95, pp. 60–69. DOI:10.1016/j.apacoust.2015.02.009

31.    H. Razavi, M. Keymanesh, and I. F. Golpayegani (2019), Analysis of free and forced vibrations of ultrasonic vibrating tools, case study: ultrasonic assisted surface rolling process, Int. J. Adv. Manuf. Technol., vol. 103, no. 5–8 , pp. 2725–2737,DOI: 10.1007/s00170-019-03718-x

32.    A. Abdullah, A. Pak, and A. Shahidi (1986), Equivalent Electrical Simulation of High-Power Ultrasonic Piezoelectric Transducers by Using Finite Element Analysis, Ultrasonic.Co.Ir, no. 0, pp. 1–14, from http://ultrasonic.co.ir/files/003.pdf.

33.    M. Y. Baraya and M. Hossam (2020), Design of an electromechanical system for measuring and monitoring micro-ultrasonic amplitude of Langevin transducer, International Journal of Advanced Manufacturing Technology, vol. 107, no. 7–8, pp. 2953–2965, DOI: 10.1016/j.ultras.2019.106002

34.    J. Yu, H. Luo, T. V. Nguyen, L. Huang, B. Liu, and Y. Zhang (2020), Eigenfrequency characterization and tuning of Ti-6Al-4V ultrasonic horn at high temperatures for glass molding, Ultrasonics, vol. 101

35.    Anon, Ieee Standard on Piezoelectricity. USA: New York, N.Y (1978), Institute of Electrical and Electronics Engineers

36.    A. Bybi, H. Drissi, M. Garoum, and A. C. Hladky-Hennion (2019), One-Dimensional Electromechanical Equivalent Circuit for Piezoelectric Array Elements, Adv. Sci. Technol. Innov., pp. 3–9, DOI: 10.1007/978-3-030-05276-8_1

37.    A. A. Vives (2008), Piezoelectric transducers and applications. Springer-Verlag Berlin Heidelberg, DOI: 10.1007/978-3-540-77508-9

38.    F. Sammoura and S. G. Kim (2012), Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 5, pp. 990–998, DOI: 10.1109/TUFFC.2012.2284.

39.    S. Sherrit, S. P. Leary, B. P. Dolgin, and Y. Bar-Cohen (1999), Comparison of the Mason and KLM equivalent circuits for piezoelectric resonators in the thickness mode, in Proceedings of the IEEE Ultrasonics Symposium, vol. 2, pp. 921–926, DOI: 10.1109/ultsym.1999.849139

40.    Y. Bar-Cohen and K. Zacny (2020), Advances in Terrestrial and Extraterrestrial Drilling.

41.    From: https://philtec.com/wp-content/uploads/2019/06/RC19.pdf, accessed on 2023-02-07