DOI: 10.5937/jaes0-43529
This is an open access article distributed under the CC BY 4.0
Volume 2 article 1128 pages: 859-871
In this study, a new finite element model for ultrasonic welding equipment is proposed. This help to solve remaining issues such as element type selection for the numerical model, mesh size, and how to determine the parameters of piezoelectric materials. The obtained results clearly show the influence of element type and mesh size on resonance frequency and amplitude. Specifically, with a mesh size of 2 mm, it was concluded to be suitable for the model. For the C3D8 element (C3D8E), the computation time is reduced by 0.25 times compared to the C3D20R element (C3D20RE). After that, an experimental processing procedure is performed to evaluate the numerical simulation results. Specifically, the handling of signal noise when measuring a very small displacement at high frequencies of an ultrasonic vibrating device. Based on the confirmed finite element model, this model is extended to evaluate the influence of the load on the amplitude and resonant frequency of the ultrasonic welding system. The results show that when the load increases, the amplitude decreases while the resonant frequency increases. The results of this study can be applied to the design of ultrasonic vibration systems.
This work was funded by the Ministry of Education & Training Vietnam (grant number B2020-TNA-02)
1. B. Chandra Behera (2011), Development and Experimental Study of Machining Parameters in Ultrasonic Vibration-assisted Turning, fromhttp://ethesis.nitrkl.ac.in/4416/1/Development_and_experimental_study_of_machining_parameters_in_ultrasonic_vibration-assisted_turning.pdf
2. A. C. Mathieson (2012), Nonlinear Characterisation Of Power Ultrasonic Devices Used In Bone Surgery, from http://theses.gla.ac.uk/3135/.
3. X. Li, P. Harkness, K. Worrall, R. Timoney, and M. Lucas (2017) A Parametric Study for the Design of an Optimized Ultrasonic Percussive Planetary Drill Tool, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 64, no. 3, pp. 577–589, DOI: 10.1109/TUFFC.2016.2633319.
4. Y. Yao, Y. Pan, and S. Liu (2020), Power ultrasound and its applications: A state-of-the-art review, Ultrason. Sonochem., vol. 62, DOI: 10.1016/j.ultsonch.2019.104722
5. A. T. São-carlense, S. Carlos, S. P. Brazil, and D. Vandepitte (2007), Experimental and Finite Element Analysis of Composite, pp. 447–450
6. M. Rezaei, M. Farzin, F. Ahmadi, and M. R. Niroomand, Design (2022), Analysis and Manufacturing of a Bone Cutting Ultrasonic Horn-Tool and Verification with Experimental Tests, Journal of Applied and Computational Mechanics, vol. 8, no. 2. 2022, 438–447, DOI: 10.22055/jacm.2020.31298.1904.
7. O. N. Arani, A. Yaghootian, and S. Sodagar (2022), Investigation on the Crack Effect in the Cylinder and Matrix on the Backscattering Field Frequency Specifications using the Finite Element Method, Journal of Applied and Computational Mechanics, vol. 8, no. 2, pp. 448–455,DOI: 10.22055/jacm.2020.31700.1910
8. M. Zarei, G. R. Faghani, M. Farzin, and M. Mashayekhi (2017), Investigation on the ultrasonic tube hydroforming in the bulging process using finite element method, Journal of Applied and Computational Mechanics, vol. 3, no. 4, pp. 251–257, DOI: 10.22055/jacm.2017.21852.1119
9. O. N. Arani, M. Z. Salimabad, A. Yaghootian, and M. Kari (2023), Calculation of Backscattered Ultrasonic Waves Field from a Copper-clad Steel Rod Immersing in Water and Effect of Clad Corrosion and Interfacial Disbond between Clad and Rod Defects on this Field using the Finite Element Method, Journal of Applied and Computational Mechanics, vol. 9, no. 1, pp. 58–71, DOI: 10.22055/jacm.2021.38098.3172.
10. S. A. Arhamnamazi, N. B. M. Arab, A. R. Oskouei, and F. Aymerich (2019), Accuracy assessment of ultrasonic C-scan and X-ray radiography methods for impact damage detection in glass fiber reinforced polyester composites, J. Appl. Comput. Mech., vol. 5, no. 2, pp. 258–268, DOI: 10.22055/JACM.2018.26297.1318
11. X. Li, M. Lucas, and P. Harkness (2018), Full and Half-Wavelength Ultrasonic Percussive Drills, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 11, pp. 2150–2159, DOI: 10.1109/TUFFC.2018.2867535
12. D. A. DeAngelis, G. W. Schulze, and K. S. Wong (2015), Optimizing Piezoelectric Stack Preload Bolts in Ultrasonic Transducers, in Physics Procedia, vol. 63, pp. 11–20, DOI: 10.1016/j.phpro.2015.03.003.
13. M. V. Guiman and I. C. Roca (2017), A New Approach on Vibrating Horns Design, Shock and Vibration, vol. 2017, DOI: 10.1155/2017/8532021.
14. K. Nakamura (2020), Evaluation methods for materials for power ultrasonic applications, Japanese Journal of Applied Physics, vol. 59, DOI: 10.35848/1347-4065/ab9230
15. E. Evaluation, O. F. Indicators, O. F. Nonlinearity, F. O. R. Use, I. N (2002). Ultrasound, and T. Characterizations, Experimental Evaluation of Indicators of Nonlinearity, vol. 28, no. 02, pp. 1509–1520
16. R. Marat-Mendes, C. J. Dias, and J. N. Marat-Mendes (2002), A comparative study of piezoelectric materials using smart angular accelerometers, in Key Engineering Materials, vol. 230–232, pp. 181–184,DOI: 10.4028/www.scientific.net/kem.230-232.181
17. S. Sherrit, B. P. Dolgin, Y. Bar-Cohen, D. Pal, J. Kroh, and T. Peterson (1999), Modeling of horns for sonic/ultrasonic applications, in Proceedings of the IEEE Ultrasonics Symposium, vol. 1, pp. 647–651, DOI: 10.1109/ultsym.1999.849482
18. H. Al-Budairi, M. Lucas, and P. Harkness (2013), A design approach for longitudinal–torsional ultrasonic transducers, Sensors Actuators A Phys., vol. 198 , pp. 99–106, DOI: 10.1016/j.sna.2013.04.024.
19. M. Baraya, Mohamed Y.; Hossam (2020), Design of an electromechanical system for measuring and monitoring micro-ultrasonic amplitude of Langevin transducer, International J. Adv. Manuf. Technol, DOI: 10.1007/s00170-020-04922-w.
20. V. D. Luong, A. S. Bonnin, F. Abbès, J. B. Nolot, D. Erre, and B. Abbès (2021), Finite Element and Experimental Investigation on the Effect of Repetitive Shock in Corrugated Cardboard Packaging, J. Appl. Comput. Mech., vol. 7, no. 2, pp. 820–830, DOI: 10.22055/jacm.2020.35968.2771
21. X. Chen, Y. Yin, Q. Hou, L. Jin, and X. Li (2010), The simulation and structural optimization of ultrasonic transducer, 2010 2nd Int. Conf. Ind. Inf. Syst. IIS 2010, vol. 1, pp. 330–333, DOI: 10.1109/INDUSIS.2010.5565844
22. I. Jovanović, D. Mančić, U. Jovanović, and M. Prokić (2017), A 3D model of new composite ultrasonic transducer, J. Comput. Electron., vol. 16, no. 3, pp. 977–986, DOI: 10.1007/s10825-017-1000-0
23. Q. Xu, A. Gao, Y. Li, and Y. Jin (2022), Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester, Micromachines, vol. 13, no. 5, DOI: 10.3390/mi13050675
24. M. Liu (2012), Finite Element Analysis of the Contact Deformation of Piezoelectric Materials, Theses and Dissertations--Chemical and Materials Engineering, from http://uknowledge.uky.edu/cme_etds/15
25. A. Abdullah and A. Pak (2008), Correct prediction of the vibration behavior of a high power ultrasonic transducer by FEM simulation, International Journal of Advanced Manufacturing Technology, vol. 39, no. 1–2, pp. 21–28, DOI:10.1007/s00170-007-1191-9.
26. J. T. Zhao, L. P. Ning, Z. M. Jiang, and Y. L. Li (2021), Design and finite element analysis of longitudinal vibrating stepped ultrasonic horn, Journal of Physics: Conference Series, vol. 2029, no. 1, DOI: 10.1088/1742-6596/2029/1/012056.
27. A. Abdullah, M. Shahini, and A. Pak (2009), An approach to design a high power piezoelectric ultrasonic transducer, J. Electroceramics, vol. 22, no. 4, pp. 369–382, DOI: 10.1007/s10832-007-9408-8.
28. D. Hanson, T. P. Waters, D. J. Thompson, R. B. Randall, and R. A. J. Ford (2007), The role of anti-resonance frequencies from operational modal analysis in finite element model updating, Mech. Syst. Signal Process., vol. 21, no. 1, pp. 74–97, DOI: 10.1016/j.ymssp.2006.01.001.
29. J. Kim and J. Lee (2020), Parametric study of bolt clamping effect on resonance characteristics of langevin transducers with lumped circuit models, Sensors (Switzerland), vol. 20, no. 7, pp. 1–9, DOI: 10.3390/s20071952
30. I. C. Rosca, M. I. Pop, and N. Cretu (2015), Experimental and numerical study on an ultrasonic horn with shape designed with an optimization algorithm, Appl. Acoust., vol. 95, pp. 60–69. DOI:10.1016/j.apacoust.2015.02.009
31. H. Razavi, M. Keymanesh, and I. F. Golpayegani (2019), Analysis of free and forced vibrations of ultrasonic vibrating tools, case study: ultrasonic assisted surface rolling process, Int. J. Adv. Manuf. Technol., vol. 103, no. 5–8 , pp. 2725–2737,DOI: 10.1007/s00170-019-03718-x
32. A. Abdullah, A. Pak, and A. Shahidi (1986), Equivalent Electrical Simulation of High-Power Ultrasonic Piezoelectric Transducers by Using Finite Element Analysis, Ultrasonic.Co.Ir, no. 0, pp. 1–14, from http://ultrasonic.co.ir/files/003.pdf.
33. M. Y. Baraya and M. Hossam (2020), Design of an electromechanical system for measuring and monitoring micro-ultrasonic amplitude of Langevin transducer, International Journal of Advanced Manufacturing Technology, vol. 107, no. 7–8, pp. 2953–2965, DOI: 10.1016/j.ultras.2019.106002
34. J. Yu, H. Luo, T. V. Nguyen, L. Huang, B. Liu, and Y. Zhang (2020), Eigenfrequency characterization and tuning of Ti-6Al-4V ultrasonic horn at high temperatures for glass molding, Ultrasonics, vol. 101
35. Anon, Ieee Standard on Piezoelectricity. USA: New York, N.Y (1978), Institute of Electrical and Electronics Engineers
36. A. Bybi, H. Drissi, M. Garoum, and A. C. Hladky-Hennion (2019), One-Dimensional Electromechanical Equivalent Circuit for Piezoelectric Array Elements, Adv. Sci. Technol. Innov., pp. 3–9, DOI: 10.1007/978-3-030-05276-8_1
37. A. A. Vives (2008), Piezoelectric transducers and applications. Springer-Verlag Berlin Heidelberg, DOI: 10.1007/978-3-540-77508-9
38. F. Sammoura and S. G. Kim (2012), Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 5, pp. 990–998, DOI: 10.1109/TUFFC.2012.2284.
39. S. Sherrit, S. P. Leary, B. P. Dolgin, and Y. Bar-Cohen (1999), Comparison of the Mason and KLM equivalent circuits for piezoelectric resonators in the thickness mode, in Proceedings of the IEEE Ultrasonics Symposium, vol. 2, pp. 921–926, DOI: 10.1109/ultsym.1999.849139
40. Y. Bar-Cohen and K. Zacny (2020), Advances in Terrestrial and Extraterrestrial Drilling.
41. From: https://philtec.com/wp-content/uploads/2019/06/RC19.pdf, accessed on 2023-02-07