Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-43711 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1129 pages: 872-883

Zulfaidah Ariany
Departement of Marine Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia; Department of Industry, Sekolah Vokasi, Universitas Diponegoro, Jl. Prof,Soedarto S,H, Tembalang, Semarang, Indonesia

Trika Pitana*
Departement of Marine Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia

Iwan Vanany
Department of System Engineering,and Industry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia

This study aims to identify, calculate the impact rating, and mitigate the effects on new ferry construction in Indonesian shipyards. The Risk Matrix method and Failure Mode and Effect Analysis (FMEA) are employed to analyze risk levels. Data were collected through field observations and interviews regarding risks and potential delays in ship components. The results reveal 23 potential hazard sources, with two risks having the highest Risk Priority Number (RPN) values. Assessment based on the quality control section that causes delays in the arrival of ME/AE/pumps and other mechanical equipment 366.18. Assessment of the Project Leader process Delay in the assembly/fabrication/erect process 519.49. Part of production leadership Delay in assembly/fabrication/erecting processes 317.37. Based on the assessment of the three sections, high-risk potential occurs in ship hull work, Delays in assembly/fabrication/erect processes, and machining work Delays in the Arrival of ME/AE/Pumps and Machine Equipment. The risk matrix indicates high-risk ratings for component delays in ship hull work, medium risk for machining work, and the low risk for electrical work and other components. The next step is to assess the potential of domestic components and design a component availability model for new shipbuilding, including imported components. This research offers valuable insights for RoRo ferry shipping stakeholders, helping them understand the mechanisms causing delays in new ship construction and guiding efforts to reduce the risk of failure.

View article

Thanks to the ministry of transportation, especially the director general of land transportation. National and private shipyards are very helpful in data collection - department of marine systems engineering, ITS-Surabaya, Indonesia, and colleagues for their support and assistance.

1.      K. Cicek, H. H. Turan, Y. I. Topcu, and M. N. Searslan. (2010). Risk-based preventive maintenance planning using Failure Mode and Effect Analysis (FMEA) for marine engine systems. 2010 second International Conference Engineering System Management and Its Applications (ICESMA),

2.      L. Brun, S. Frederick, and J. Lee. (2017). Korea and the Shipbuilding Global Value Chain [Chapter 4], [Online]. Available:     GVC_CH_3.pdf

3.      Direktur Jenderal Perhubungan darat. (2019). Perhubungan Darat Dalam Angka 2018. Kementrian Perhubungan, Jakarta.

4.      J. Crispim, J. Fernandes, and N. Rego. (2020). Customized risk assessment in military shipbuilding. Reliability Engineering System Safety, vol. 197, no. 106809 January.

5.      C. P. P, M. Basuki, and E. Pranatal. (2018). Analisa Risiko Operasional Proses Bangunan Kapal Baru (Studi Kasus Pembangunan Kapal Lpd 124 M di PT . PAL Indonesia (Persero). Seminar Nasional Sains dan Teknologi Terapan IV 2018 ITATS, vol. IV.

6.      E. Lee, Y. Park, and J. Gye. (2009). Large engineering project risk management using a Bayesian belief network. Expert System with Application 36 5880–5887 Contents, vol. 36, pp. 5880–5887, DOI: 10.1016/j.eswa.2008.07.057.

7.      A. A. Pratiwi, I. K. Gunarta, and B. Wirjodirdjo. (2016). Modeling Shipbuilding Industrial Cluster of East Java ’ S Competitive Advantage Using System Dynamic. International Journal Industrial Electronic and Electrical Engineering, no. 9, pp. 123–127.

8.      M. Prihandono and B. Syairudin. (2017). Shipbuilding Risks Analysis (Case Study of New Build Pertamina Tanker 3.500 DWT on PT . Dumas Tanjung Perak Shipyards). International Seminar of Contemporary Research in Business and Management (ISCRBM). Surabaya, Indonesia.

9.      F. de A. L. Ferreira, L. F. Scavarda, P. S. Ceryno, and A. Leiras. (2018). Supply chain risk analysis: a shipbuilding industry case. International Journal of Logistics Research and Applications, vol. 21, no. 5, 542–556, DOI: 10.1080/13675567.2018.1472748.

10.   Surhan Cam, Serap Palaz. (2016). Challenges and Opportunities of Globalisation for an Independent Small Manufacturer: A Case Study in Turkey’s Shipyard. Journal of Organizational Ethnography, vol. 5, no. 3, pp. 15–22, DOI: 10.1108/JOE-10-2015-0024

11.   Yuri Kochetkov and B. Aliev. (2016). Risks In The Shipbuilding And Ship Repair Industry In Latvia. Vadyba Journal of Management, vol. 28, no. 1, pp. p9-13,

12.   Sianitawati and A. H. Prasetyo. (2022). Rancangan Manajemen Risiko Korporat Terintegrasi pada Perusahaan Pertambangan Batu Bara Tahun 2023-2024. JURNALKU, vol. 2, no. 4, pp. 482–501, DOI: 10.54957/jurnalku.v2i4.302

13.   F. Adrodegari, A. Bacchetti, R. Pinto, F. Pirola, and M. Zanardini. (2015). Engineer-to-order (ETO) production planning and control: An empirical framework for machinery-building companies. Production Planning and Control, vol. 26, no. 11, pp. 910–932, DOI: 10.1080/09537287.2014.1001808.

14.   E. B. Santoso, U. F. Kurniawati, and A. N. Dewanti. (2014). Development Factors of Shipping Industry Special Zone to Support Regional Innovation System,” Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi dan Pembangunan. vol. 15, no. 2, p. 141, DOI: 10.23917/jep.v15i2.243.

15.   M. Basuki, D. Manfaat, S. Nugroho, and A. A. B. Dinariyana, (2014), “Probabilistic Risk Assessment at Shipyard Industries. International Journal of Technology, vol. 5, no. 1, p. 88, DOI: https//

16.   O. H. Mahendra and M. Basuki, (2021), “Mitigasi Risiko Keterlambatan Material dan Komponen Impor Menggunakan House of Risk (HOR) pada Proyek Pembangunan Tug Boat 2x1200 HP,” in Seminar Nasional Teknologi Industri Berkelanjutan (SENASTITAN I).

17.   Standart Australian International. Ltd. (2006). Risk Management Guidelines Companion to AS/NZS 4360:2004, vol. 10, no. 5. 2007. SAI Global, Australia.

18.   D. E. W, Wiediartini, and A. I. J. (2013). Risk Analysis for Ship Converting Project Accoplishment (Case study of KRI KP Converting Project). Kapal, vol. 10, no. 3, pp. 116–123, DOI:

19.   I. Pascu, D. Paraschiv, and A. Didu. (2020). Research about using the Failure Mode and Effects Analysis method for improving the quality process performance. IOP Conference Series: Materials Science and Engineering, vol. 898, no. 1, pp. 8–13, DOI:

20.   R. Mulcahy. (2010). Risk Management: Tricks of the Trade for Project Managers. ISBN: 1932735321, 9781932735321. RMC Publications, Minnesota.

21.   M. Basuki and A. A. Wacana Putra. (2014). Model Probabilistic Risk Assessment Pada Industri Galangan Kapal Sub Klaster Jakarta. Prosiding Seminar Nasional Rekayasa Material, Sistem Manufaktur dan EnergiISBN: 978-602-71380-0-1. Jurusan Teknik Mesin, Fakultas Teknik, Universitas Hasanuddin, Makassar.

22.   R. R. Iwan and ´kowicz and Wlodzimierz Rosochack. (2014). Clustering Risk Assessment Method for Shipbuilding Industry. Industrial Management & Data Systems. vol. Vol. 114 N. Emerald Group Publishing Limited 0263-5577, pp. 1499–1518, doi: DOI 10.1108/IMDS-06-2014-0193.

23.   Y. D. Ghadage, B. E. Narkhede, and R. D. Raut. (2020). Risk Management of Innovative Projects using FMEA; a case study. International Jurnal Business Excellence, vol. 20, no. 1, pp. 70–97, DOI: 10.1504/IJBEX.2019.10017566

24.   M. Ozkok. (2014). Risk Assessment in Ship Hull Structure Production using FMEA. Journal of Marine Science and Technology (Taiwan) vol. 22, no. 2, pp. 173–185, DOI: 10.6119/JMST-013-0222-1.

25.   M. B. Zaman, A. Santoso, Hasanuddin, and W. Busse. (2020). Risk Evaluation of Ferry in the Bali Straits using FMEA Method. IOP Conference Series: Earth and Environmental Science, vol. 557, no. 1, DOI: 10.1088/1755-1315/557/1/012045.

26.   M. Basuki and A. W. Putra. (2013). Penilaian Risiko Pekerjaan Bangunan Baru Pada Galangan Kapal Klaster Jawa Menggunakan Matrik Risiko. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014, pp. 1–8.

27.   Z. Ariany, T. Pitana, and I. Vanany. (2022). Review of the Risk Assessment Methods for Shipbuilding in Indonesia. IOP Conference Series: Earth and Environmental Science, vol. 972, no. 1, doi: 10.1088/1755-1315/972/1/012056.

28.   N. Budi Puspitasari, G. Padma Arianie, and P. Adi Wicaksono. (2017). Analisis Identifikasi Masalah dengan Menggunakan Metode Failure Mode and Effect Analysis (FMEA) dan Risk Priority Number (RPN) pada Sub Asembly Line (Studi Kasus : PT. Toyota Motor Manufacturing Indonesia). J@ti Undip : Jurnal Teknik Industri., vol. 12, no. 2, p. 77- 82, DOI: 10.14710/jati.12.2.77-84.

29.   C. S. Carlson, (2012). Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes Using Failure Mode and Effects Analysis. ISBN: 978-1-118-00743-3. John Wiley & Sons, Inc.

30.   M. S. Kirkire, S. B. Rane, and J. R. Jadhav. (2015). Risk management in medical product development process using traditional FMEA and fuzzy linguistic approach: A case study. Journal of Industrial Engineering International, vol. 11, no. 4, pp. 595–611, DOI: 10.1007/s40092-015-0113-y.

31.   H. T. Liu and Y. lin Tsai. (2012). A Fuzzy Risk Assessment Approach for Occupational Hazards in The Construction Industry. Safety Science, vol. 50, no. 4, pp. 1067–1078, DOI: 10.1016/j.ssci.2011.11.021.