Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-45137 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1137 pages: 963-971

Wahyuningsih Tri Hermani*
Department of Civil Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

Ary Setyawan
Department of Civil Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

Department of Civil Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

Evi Gravitiani
Department of Economy, Universitas Sebelas Maret, Surakarta, Indonesia

The construction of the Solo-Yogyakarta toll road is part of the National Strategic Project. At the development stage, toll road infrastructure needs to assess the impact of traffic, considering many security and safety disturbances. Road performance evaluation is essential to overcome traffic problems during toll road operations in the future. The purpose of the study was to calculate traffic performance at the unsignaled intersection affecting the construction of the Solo-Yogya toll road. The locations studied were four Solo-Yogya toll road access intersections using primary data on the condition of existing non-toll roads. Carry out traffic surveys of the number of vehicles, travel time, and vehicle speed. The performance of the unsignaled intersection was calculated using Jica Strada's modeling with applicable toll road tariffs and traffic growth of 5.6% per year. The performance of the unsignaled intersection at the construction of the Solo-Yogya toll road in 2022 has an average Volume-Capacity Ratio (VCR) value of 0.61. In 2046, it has an average Volume-Capacity Ratio value of 0.99. At the intersection of Boyolali-Kartosuro-Banyudono and the intersection Kartosuro-Klaten-Ngaron, it is recommended to make an Interchange before 2032. The recommendation for making the Kartosuro and Boyolali Interchange is because in 2032 the Volume-Capacity Ratio is more than 0.8 to reduce vehicle delays.

View article

1.      E. Calderón, M. Valenzuela, V. Minatogawa, and H. Pinto. (2023). Development of the Historical Analysis of the Seismic Parameters for Retroffiting Measures in Chilean Bridges. Buildings, vol. 13, no. 2, pp. 1–17, doi: 10.3390/buildings13020274.

2.      I. N. D. P. Putra, Y. S. Amalia, and G. A. M. K. Dewi. (2019). Framework of construction procedure manual of the project management unit and other stakeholders in the Surabaya City Government. Int. J. Adv. Res. Eng. Technol., vol. 10, no. 6, pp. 174–182, doi: 10.34218/IJARET.10.6.2019.021.

3.      N. Du, M. Zhang, J. Huang, and G. Wang. (2019). A conflict-detecting and early-warning system for multi-plan integration in small cities and towns based on cloud service platform. Smart Cities, vol. 2, no. 3, pp. 388–401, doi: 10.3390/smartcities2030024.

4.      Q. Wang, Y. Chen, H. Guan, O. Lyulyov, and T. Pimonenko. (2022). Technological Innovation Efficiency in China: Dynamic Evaluation and Driving Factors. Sustain., vol. 14, no. 14, doi: 10.3390/su14148321.

5.      C. Liu. (2021). Infrastructure public–private partnership (Ppp) investment and government fiscal expenditure on science and technology from the perspective of sustainability. Sustain., vol. 13, no. 11, doi: 10.3390/su13116193.

6.      N. H. M. Jamail, A. G. Abdul Halim, and N. S. M. Jamail. (2020). Development of intelligent road maintenance system mobile apps for a highway. Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp. 2350–2357, doi: 10.11591/eei.v9i6.2489.

7.      A. E. Husin, D. I. Rahmawati, M. Meisaroh, and B. D. Kussumardianadewi (2021). Performance Improvement of Box Girder Construction on Toll Road Projects based on M-PERT and VE. Open Civ. Eng. J., vol. 15, no. 1, pp. 299–309, doi: 10.2174/1874149502115010299.

8.      C. Zhou, P. Lin, X. Lin, and Y. Cheng. (2021). a Method for Traffic Flow Forecasting in a Large-Scale Road Network Using Multifeatures. Promet - Traffic - Traffico, vol. 33, no. 4, pp. 593–608, doi: 10.7307/ptt.v33i4.3709.

9.      W. Mu and C. Gong. (2023). A Data-Driven Approach to W-Beam Barrier Monitoring Data Processing: A Case Study of Highway Congestion Mitigation Strategy. Sustain., vol. 15, no. 5, doi: 10.3390/su15054078.

10.   M. Shatanawi, A. Alatawneh, and F. Mészáros. (2022). Implications of static and dynamic road pricing strategies in the era of autonomous and shared autonomous vehicles using simulation-based dynamic traffic assignment: The case of Budapest,” Res. Transp. Econ., vol. 95, no. August, doi: 10.1016/j.retrec.2022.101231.

11.   M. Bagheri, H. Ghafourian, M. Kashefiolasl, M. T. S. Pour, and M. Rabbani. (2020). Travel management optimization based on air pollution condition using markov decision process and genetic algorithm (case study: Shiraz city). Arch. Transp., vol. 53, no. 1, pp. 89–102, doi: 10.5604/01.3001.0014.1746.

12.   H. A. Abbas, H. A. Obaid, and A. A. A. Alwash. (2022). Enhanced Road Network to Reduce the Effect of (External – External) Freight Trips on Traffic Flow. Civ. Eng. J., vol. 8, no. 11, pp. 2573–2584, doi: 10.28991/CEJ-2022-08-11-015.

13.   R. K. Duraku and R. Ramadani. (2019). Development of Traffic Volume Forecasting Using Multiple Regression Analysis and Artificial Neural Network. Civ. Eng. J., vol. 5, no. 8, pp. 1698–1713, doi: 10.28991/cej-2019-03091364.

14.   Z. H. Khan, T. A. Gulliver, and W. Imran. (2021). Transitions. vol. 7, no. 06, pp. 1060–1069.

15.   W. T. Hermani, A. Setyawan. (2023). The Effect of Toll Road Operation On National Road Performance In Central Java Province. Journal of Applied Engineering Science, Vol. 21, No. 2, 2023, DOI:10.5937/jaes0-43041

16.   F. M. Suryani, C. Mutiawati, and R. Faisal. (2023). The Influence of Service Performance And Passenger Satisfaction On Public Transport Loyalty In A Small City In A Developing Country. pp. 644–655.

17.   N.-O. Etinosa, O. Kennedy, D. Famoroti, and J. Samuel. (2022). The validity of a decentralised simulation-based system for the resolution of Road traffic congestion. J. Appl. Eng. Sci., vol. 20, no. 3, pp. 821–830, doi: 10.5937/jaes0-28642.

18.   R. Zhang, L. Zhao, X. Qiu, H. Zhang, and X. Wang. (2020). A comprehensive comparison of the vehicle vibration energy harvesting abilities of the regenerative shock absorbers predicted by the quarter, half and full vehicle suspension system models. Appl. Energy, vol. 272, no. February, p. 115180, doi: 10.1016/j.apenergy.2020.115180.

19.   S. Baniya, N. Rocha, and M. Ruta. (2020). Trade effects of the New Silk Road: A gravity analysis. J. Dev. Econ., vol. 146, no. February, p. 102467, doi: 10.1016/j.jdeveco.2020.102467.

20.   R. Pokharel, L. Bertolini, M. te Brömmelstroet, and S. R. Acharya. (2021). Spatio-temporal evolution of cities and regional economic development in Nepal: Does transport infrastructure matter?. J. Transp. Geogr., vol. 90, no. November 2020, doi: 10.1016/j.jtrangeo.2020.102904.

21.   F. Simini, G. Barlacchi, M. Luca, and L. Pappalardo. (2021). A Deep Gravity model for mobility flows generation. Nat. Commun., vol. 12, no. 1, doi: 10.1038/s41467-021-26752-4.

22.   A. Alam, L. Singh, Z. A. Jaffery, Y. K. Verma, and M. Diwakar. (2022). Distance-based confidence generation and aggregation of classifier for unstructured road detection. J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 8727–8738, doi: 10.1016/j.jksuci.2021.09.020.

23.   H. N. Nurjaman, L. Faizal, N. Suaryana, Y. Dharmawan, and Suwito. (2020). The experimental study of precast concrete panel connection system for rigid pavement in Indonesia. AIP Conf. Proc., vol. 2227, no. May, 2020, doi: 10.1063/5.0004195.

24.   M. N. Kamel Boulos, A. D. Tsouros, and A. Holopainen. (2015). Social, innovative and smart cities are happy and resilient’: Insights from the WHO EURO 2014 International healthy cities conference. Int. J. Health Geogr., vol. 14, no. 1, pp. 1–9, doi: 10.1186/1476-072X-14-3.

25.   N. Breyer, C. Rydergren, and D. Gundlegård. (2020). Comparative Analysis of Travel Patterns from Cellular Network Data and an Urban Travel Demand Model. J. Adv. Transp., vol. 2020, doi: 10.1155/2020/3267474.

26.   W. Jamilah and D. Handayani. (2018). Impact of freight transportation on road network performance in Surakarta with toll road scenario Impact of Freight Transportation on Road Network Performance in Surakarta with Toll Road Scenario. vol. 040017, no. June, 2018.

27.   PUPR, “Indonesian Road Capacity Manual (MKJI).” 1997.

28.   J. Akbardin, D. Parikesit, B. Riyanto, A. Taufik, Mulyono, and S. W. Mudjanarko. (2019). The Trips Assignment Influence of Freight Vehicle Network System on the Need for Fuel Consumption in Internal-Regional. J. Phys. Conf. Ser., vol. 1364, no. 1, doi: 10.1088/1742-6596/1364/1/012047.

29.   O. Martinez, J. M. Garcia, and N. Kumar. (2021). The gravity model as a tool for decision making. Some highlights for Indian roads. Transp. Res. Procedia, vol. 58, no. 2019, pp. 333–339, doi: 10.1016/j.trpro.2021.11.045.

30.   A. Dombalyan, V. Kocherga, E. Semchugova, and N. Negrov. (2017). Traffic Forecasting Model for a Road Section. Transp. Res. Procedia, vol. 20, no. September 2016, pp. 159–165, doi: 10.1016/j.trpro.2017.01.040.

31.   R. Hidayat and A. Shafira Niskhi. (2021). The Effect of Vehicle Proportion on Traffic Flow Speed ​​(Case Study: Jalan Tgk. Chik Ditiro in front of the Banda Aceh Finance Building). Tameh J. Civ. Eng., vol. 10, no. 2, pp. 80–89, doi: 10.37598/tameh.v10i2.155.

32.   Tamin, Transportation planning and modeling. ITB, 2000.

33.   Z. Wu, M. Huang, A. Zhao, and Z. Lan. (2021). Urban Traffic Planning and Traffic Flow Prediction based on ulchis gravity model and Dijkstra algorithm. J. Phys. Conf. Ser., vol. 1972, no. 1 doi: 10.1088/1742-6596/1972/1/012080.