Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-41112 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1141 pages: 999-1015

Vasilios Zarikas*
Department of Mathematics, University of Thessaly, Lamia, Greece

Moldir Zholdasbayeva
Nazarbayev University, Astana, Kazakhstan

Ayan Mitra
The Inter-University Centre for Astronomy and Astrophysics (IUCAA), India; Energetic Cosmos Laboratory, Nazarbayev University, Kazakhstan; Kazakh-British Technical University, Kazakhstan

This study presents a statistical analysis applying different statistical techniques, including trained Bayesian Networks an artificial intelligence (AI) method, to explore datasets of lift accidents involving safety rules for two countries: UK and France. The study concerns six years data for both countries and covers almost all elevator accidents taken place during private and professional uses; 218 cases for UK and 205 cases for France. The relevant time interval for U.K. is 6th January 2006 to 29th December 2012, while for France data concern the period of 18th February 2003 to 17th December 2009. The major aim of the study is to exhibit and demonstrate that for accident datasets, at least for similar datasets, multiple statistical methods have to be applied in order to extract reliable information, i.e. investigate interactions among factors and therefore help to develop prevention measures. Three statistical models were built to derive associations between factors concerning violation of rules related to the installation and maintenance of elevators, passengers’ safety rules, risks and unforeseen circumstances. Associations between severity of injury and categories of gender or age of injured people have been found. Furthermore, specific influences between severity of injury and categories of type of rules or of type of accident have been identified. The obtained results will contribute to the design of efficient methods to avoid future accidents in both countries.

View article

1.      Bapin, Y., Alimanov, K., Zarikas, V. (2020). Camera-Driven Probabilistic Algorithm for Multi-Elevator Systems. Energies, vol. 15, no. 23, 6161, DOI: 10.3390/en13236161

2.      Bapin, Y., Zarikas, V. (2019). Smart Building’s Elevator with Intelligent Control Algorithm based on Bayesian Networks. International Journal of Advanced Computer Science and Applications, vol. 10, no. 2, 16–24, DOI: 10.14569/ijacsa.2019.0100203

3.      Zarikas, V., Loupis, M., Papanikolaou, N., Kyritsi, C. (2013). Statistical survey of elevator accidents in Greece. Safety Science, vol. 59, 93–103, DOI: 10.1016/j.ssci.2013.05.001

4.      Zarikas, V., Papanikolaou, N., Loupis, M., Spyropoulos, N. (2013). Intelligent Decisions Modeling for Energy Saving in Lifts: An Application for Kleemann Hellas Elevators. Energy and Power Engineering, vol. 5, no. 3, 236–244, DOI: 10.4236/epe.2013.53023

5.      Zarikas, V., Tursynbek, N., (2017). Intelligent Elevators in a Smart Building. Future Technologies Conference 2017, p. 126–133.

6.      Göksenli, A., Eryürek, I.B. (2009). Failure analysis of an elevator drive shaft. Engineering Failure Analysis, vol. 16, no. 4, 1011–1019, DOI: 10.1016/j.engfailanal.2008.05.014

7.      Jacobsen, C., Schon, C.A., Kneubuehl, B., Thali, M.J., Aghayev, E. (2008). Unusually extensive head trauma in a hydraulic elevator accident: Post-mortem MSCT findings, autopsy results and scene reconstruction. Forensic and Legal Medicine, vol. 15, no. 7, 462–466, DOI: 10.1016/j.jflm.2008.03.006

8.      Mccann, M. (2003). Deaths in construction related to personnel lifts, 1992 – 1999. Safety Research, vol. 34, no. 5, 507–514, DOI: 10.1016/j.jsr.2003.07.001

9.      Swuste, P. (2013). A “normal accident” with a tower crane? An accident analysis conducted by the Dutch Safety Board. Safety Science, vol. 57, 276–282, DOI: 10.1016/j.ssci.2013.03.002

10.   Almeida, A., Hirzel, S., Patrão, C., Fong, J., Dütschke, E. (2012). Energy-efficient elevators and escalators in Europe: An analysis of energy efficiency potentials and policy measures. Energy & Buildings, vol. 47, 151–158, DOI: 10.1016/j.enbuild.2011.11.053

11.   Chi, C., Chang, T., Tsou, C. (2006). In-depth investigation of escalator riding accidents in heavy capacity MRT stations. Accident Analysis and Prevention, vol. 38, no. 4, 662–670, DOI: 10.1016/j.aap.2005.12.010

12.   Olander, E.K., Eves, F.F. (2011). Elevator availability and its impact on stair use in a workplace. Environmental Psychology, vol. 31, no. 2, 200–206, DOI: 10.1016/j.jenvp.2011.03.001

13.   Zholdasbayeva, M., Zarikas, V., (2021). A Comparison of Bayesian and Frequentist Approaches for the Case of Accident and Safety Analysis, as a Precept for All AI Expert Models. ICAART 2021, p. 1054-1065.

14.   McCann, M. (2013). Deaths and Injuries Involving Elevators and Escalators. CPWR, The Center of Construction Research and Training, Silver Spring.

15.   Landsverk, G. A man died after an elevator pinned his body between floors, from

16.   Data used in the present study: Zarikas, V., (2021). “lifts accidents UK and France”. Mendeley Data, V1, DOI: 10.17632/spvftz7gbs.1

17.   Chen, C., Guo, F. (2016). Evaluating the influence of crashes on driving risk using recurrent event models and naturalistic driving study data. Journal of Applied Statistics, vol. 43, no. 12, 2225-2238, DOI: 10.1080/02664763.2015.1134449

18.   Cummings, P., Mcknight, B., Weiss, N.S. (2003). Matched-pair cohort methods in traffic crash research. Accident Analysis and Prevention, vol. 35, no. 1, 131–141. DOI: 10.1016/s0001-4575(01)00108-7

19.   Eboli, L., Forciniti, C., Mazzulla, G. (2020). Factors influencing accident severity: an analysis by road accident type. Transportation Research Procedia, vol. 47, 449–456, DOI: 10.1016/j.trpro.2020.03.120

20.   Fountas, G., Anastasoloupos, P.S., Mannering, F.L. (2018). Analysis of vehicle accident-injury severities: A comparison of segment- versus accident-based latent class ordered probit models with class-probability functions. Analytic Methods in Accident Research, vol. 18, 15–32, DOI: 10.1016/j.amar.2018.03.003

21.   Michalaki, P., Quddus, M. A., Pitfield, D., Huetson, A. (2015). Exploring the factors affecting motorway accident severity in England using the generalised ordered logistic regression model. Safety Research, vol. 55, 89–97, DOI: 10.1016/j.jsr.2015.09.004

22.   Hu, L., Yue, D., Zhao, G. (2019). Reliability Assessment of Random Uncertain Multi-State Systems. IEEE Access, vol. 7, 22781-22789, DOI: 10.1109/ACCESS.2019.2898912

23.   Ugurlu, F., Yildiz, S., Boran, M., Ugurlu, O., Wang, J. (2020). Analysis of fishing vessel accidents with Bayesian network and Chi-square methods. Ocean Engineering, vol. 198, 1–13, DOI: 10.1016/j.oceaneng.2020.106956

24.   Ünlü, H.K., Young, D.S., Yiğiter, A., Hilal Özcebe, L. (2022). A mixture model with poisson and zero-truncated poisson components to analyze road traffic accidents in turkey. Journal of Applied Statistics, vol. 49, no. 4, 1003-1017, DOI: 10.1080/02664763.2020.1843610

25.   Zou, Y., Ash, J.E., Park, B., Lord, D., Wu, L. (2018). Empirical bayes estimates of finite mixture of negative binomial regression models and its application to highway safety. Journal of Applied Statistics, vol. 45, no. 9, 1652-1669, DOI: 10.1080/02664763.2017.1389863

26.   Amrin, A., Zarikas, V., Spitas, C. (2018). Reliability analysis and functional design using Bayesian networks generated automatically by an “Idea Algebra” framework. Reliability Engineering and System Safety, vol. 180, 211–225, DOI: 10.1016/j.ress.2018.07.020

27.   Gerstenberger, M.C., Christophersen, A., Buxton, R., Nicol, A. (2015). Bi-directional risk assessment in carbon capture and storage with Bayesian Networks. International Journal of Greenhouse Gas Control, vol. 35, 150–159. DOI: 10.1016/j.ijggc.2015.01.010

28.   Kabir, S., Papadopoulos, Y. (2019). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science, vol. 115, 154–175, DOI: 10.1016/j.ssci.2019.02.009

29.   Mukashema, A., Veldkamp, A., Vrieling, A. (2014). Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network. International Journal of Applied Earth Observations and Geoinformation, vol.  33, 331–340, DOI: 10.1016/j.jag.2014.05.005

30.   Stephanidis, C., Paramythis, A., Zarikas, V., Savidis, A. (2005). The PALIO Framework for Adaptive Information Services. Javahery, H., Seffah, A. (Eds.), Multiple User Interfaces: Cross-Platform Applications and Context-Aware Interfaces. UK, p. 69–92.

31.   Zarikas, V., Papageorgiou, E., Pernebayeva, D., Tursynbek,T, (2018). Medical Decision Support Tool from a Fuzzy-Rules Driven Bayesian Network. ICAART 2018, p. 539–549.

32.   Zarikas, V., Papageorgiou, E., Regner, P. (2015). Bayesian network construction using a fuzzy rule based approach for medical decision support. Expert Systems, vol. 32, no. 3, 344–369, DOI: 10.1111/exsy.12089

33.   Ahmadi, M.V., Doostparast, M. (2022). Predictive analysis for joint progressive censoring plans: A Bayesian approach. Journal of Applied Statistics, vol. 49, no. 2, 394-410, DOI: 10.1080/02664763.2020.1815671

34.   Al-Bossly, A. (2020). Bayesian statistics application on reliability prediction and analysis. Journal of Statistics Applications and Probability, vol. 9, no. 1, 19-34, DOI: 10.18576/jsap/090103

35.   Bapin, Y., Zarikas, V., (2019). Probabilistic Method for Estimation of Spinning Reserves in Multi-connected Power Systems with Bayesian Network-based Rescheduling Algorithm. ICAART 2019, p. 840–849.

36.   Conrady, S., Jouffe, L., Elwert, F. Causality for Policy Assessment and Impact Analysis Directed Acyclic Graphs and Bayesian Networks for Causal Identification and Estimation, from

37.   Lu., Z., Lou, W. (2021). Bayesian approaches to variable selection in mixture models with application to disease clustering. Journal of Applied Statistics, vol. 50, no. 2, 387-407, DOI: 10.1080/02664763.2021.1994529

38.   Mao, C., Lu, L., Hu, B. (2020). Local probabilistic model for Bayesian classification: A generalized local classification model. Applied Soft Computing Journal, vol. 93, DOI: 10.1016/j.asoc.2020.106379

39.   Montgomery, D.C., Runger, G.C. (2014). Applied Statistics and Probability for Engineers (6th ed.). Wiley, USA.

40.   EU Open Data Portal. Elevator data, from

41.   Gutierrez-Osorio, C., Pedraza, C. (2020). Modern data sources and techniques for analysis and forecast of road accidents: A review. Traffic and Transportation Engineering, vol. 7, no. 4, 432–446, DOI: 10.1016/j.jtte.2020.05.002

42.   Juana-Espinosa, S., Lujan-Mora, S. (2020). Open government data portals in the European Union: A dataset from 2015 to 2017. Data in Brief, vol. 29, 1–7, DOI: 10.1016/j.dib.2020.105156

43.   Construction Industry Council. Guidelines on Safety of Lift Shaft Works (Volume 3 – Throughout the Occupation Stage of Building), from


45.   Electrical and Mechanical Service Department. Code of Practice for lift workers and escalator works, from

46.   Perez-Vicente, S., Exposito Ruiz, M. (2009). Descriptive statistics. Allergologia et Immunopathologia, vol. 37, no. 6, 314–320, DOI: 10.1016/j.aller.2009.10.005

47.   Wood, G.R. (2005). Confidence and prediction intervals for generalised linear accident models. Accident Analysis and Prevention, vol. 37, no. 2, 267–273, DOI: 10.1016/j.aap.2004.10.005

48.   Hu, B., Shao, J. (2008). Generalized linear model selection using R2. Statistical Planning and Inference, vol. 138, no. 12, 3705–3712, DOI: 10.1016/j.jspi.2007.12.009

49.   Wood, G.R. (2002). Generalised linear accident models and goodness of fit testing. Accident Analysis and Prevention, vol. 34, no. 4, 417–427, DOI: 10.1016/S0001-4575(01)00037-9

50.   Shim, J.Y., Park, J.H., Lee, J.M., Park, D.J., Lim, H.Y. (2021). A survey on the safety system maturity levels of electronics manufacturers in South Korea. Journal of Applied Engineering Science, vol. 19, no. 3, 642-648, DOI: 10.5937/jaes0-30973

51.   Bredikhin, V., Ovchinnikova, N.E., Ovchinnikova, O.P., Kolmykova, T. (2019). Problems and prospects of university-industry interaction. Journal of Applied Engineering Science, vol. 17, no. 2, 224 – 232, DOI: 10.5937/jaes17-21843