Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-43599 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1145 pages: 1052 -1061

Andik Machfudin
National Research and Innovation Agency, Indonesia; Marine Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

A.A.B. Dinariyana
Marine Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Dian Purnama Sari
National Research and Innovation Agency, Indonesia

Verification and validation (V&V) are essential processes in computational simulations that aim to evaluate the accuracy and reliability of the results compared to experimental data. The quantification of error and uncertainty estimates is crucial in V&V. In this particular study, the open water test of a four-bladed B-series propeller model at 1/6.98 scale was conducted for three advanced coefficients (J = 0.50, J = 0.60, and J = 0.70) at the Indonesian Hydrodynamic Laboratory (IHL). The simulation was conducted under experimental conditions using FINE/Marine 7.2. Verification was performed to estimate the error δ_(〖RE〗_G)^* and the numerical uncertainty USN according to the ITTC convergence ratio R and order of accuracy P_G. The average uncertainty estimated for the thrust and torque coefficient was found to be between 1.72% to 4.81%, with a 95% confidence level. Reducing errors and uncertainties associated with verification and validation in open-water experiments can increase the reliability of numerical simulations.

View article

The present study was underpinned by The National Research and Innovation Agency (BRIN) which has provided funding for research-based educational programs, under the grant number SP/112/BPPT/08/2021. The BRIN's commitment to research has been instrumental in enabling the authors to conduct this investigation and disseminate the findings to the scientific community. The authors would like to acknowledge the valuable assistance and support received from the staff members of The Indonesian Hydrodynamic Laboratory, which has significantly contributed to the successful completion of the experiment.

1.      Stern, F., Wilson, R. V., Coleman, H. W., Paterson, E. G. (2001). Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and Procedures. Journal of Fluids Engineering, vol. 123, 2001, 793-802, DOI: 10.115/1.1412235.

2.      Lungu, A. (2021). Numerical assessment of twin-propeller performances. IOP Conference Series: Earth and Environmental Science 2021, p. 012022.

3.      Wang, J., Wan, D., Maksoud, M. A. (2020). CFD investigations of ship propulsion performance at different trim angles. International Ocean and Polar Engineering Conference 2020, vol. 30.

4.      Nouroozi, H., Zeraatgar, H. (2019). A reliable simulation for hydrodynamic performance prediction of surface-piercing propellers using URANS method. Applied Ocean Research, vol. 92, 2019, 101939, DOI :10.1016/j.apor.2019.101939,

5.      Long, Y., Han, C., Ji, B., Long, X., Wang, Y. (2020). Verification and validation of large eddy simulations of the turbulent cavitating flow around two marine propellers with emphasis on the skew angle effects. Applied Ocean Research, vol. 101, January 2020, 102167, DOI: 10.1016/j.apor.2020.102167.

6.      Zhang, W., Ma, N., Gu, X., Feng, P. (2021). RANS simulation of open propeller dynamic loads in regular head waves considering coupled oblique-flow and free-surface effect. Ocean Engineering, vol. 234, 2021,. 108741, DOI: 10.1016/j.oceaneng.2021.108741.

7.      Hussein, K. B., Ibrahim, M. (2022). Experimental and numerical study on the hydrodynamic performance of suspended curved breakwaters. Nase More, vol. 69,no. 3,  411121.

8.      Piskur, P., Szymak, P., Flis, L., Sznajder, J. (2020). Analysis of a fin drag force in a biomimetic underwater vehicle. Nase More, vol. 67, no. 3, 192-198, DOI:10.17818/NM/2020/3.2.  

9.      AmiraAdam, N., Fitriadhy , A., Quah, C., Haryanto, T., and Koto, J.,”Prediction of propeller performance using Computational Fluid Dynamics (CFD) approach,”  Proceeding Martec11th International Conference on Marine Technology, 2018,

10.   Amira, A. N., Fitriadhy, A., Quah, C. J., Haryanto, T. (2020). Computational analysis on B‑series propeller performance in open water. Marine Systems & Ocean Technology, vol. 15, 2020, 299–307, DOI: 10.1007/s40868-020-00087-z.

11.   Ebrahimi, A., Razaghian, A. H., Tootian, A., Seif, M. S. (2021). An experimental investigation of hydrodynamic performance, cavitation, and noise of a normal skew B-series marine propeller in the cavitation tunnel.  Ocean Engineering, vol. 238, 2021, 109739, DOI :10.1016/j.oceaneng.2021.109739.

12.   Purwana, A., Ariana, I. M., Wardhana, W. (2021). Numerical study on the cavitation noise of marine skew propellers. Journal of Naval Architecture and Marine Engineeringvol. 18, no. 2, 97–107,  DOI: 10.3329/jname.v18i2.38099.

13.   Chavan, S. A., Bhattacharyya, A., Sha, O. P. (2021). Open water performance of B-Series marine propellers in tandem configurations. Ocean Engineering, vol. 242, 2021, 110158, DOI: 10.1016/j.oceaneng.2021.110158.

14.   Jadmiko. E, Gurning. R. O. S, Zaman. M. B, Leksono. S, Semin, Nanda, M. I. (2019). The Effect of variation skew angle B-series propeller on performance and cavitation. International Journal of Mechanical Engineering and Technology, vol. 10, no. 5, 219-234.

15.   Santosa, A.W. B., Mausulunnaji, M. F., Setiyobudi, N., Chrismianto, D., Hadi E. S. (2022). Engine propeller matching analysis on fishing vessel using inboard engine. Journal of Applied Engineering Science, vol. 20, no. 2, 477-485, DOI: 10.5937/jaes0-31979.

16.   Windyandari, A., Haryadi G. D., Suharto. (2018). Design and performance analysis of B-series propeller for traditional purse seine boat in the north coastal region of central Java Indonesia. Journal of Applied Engineering Science, vol. 16, no. 4, 494-502, DOI:10.5937/jaes16-18506.

17.   Yilmaz, N., Atlar, M., Khorasanchi, M. (2019). An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers. Ocean Engineering, vol. 171, 2019, 139-150, DOI:10.1016/j.oceaneng.2018.11.001.

18.   Tu, T. N. (2019). Numerical simulation of propeller open water characteristics using the RANSE method. Alexandria Engineering Journal, vol. 58, no. 2, 531-537, DOI:10.1016/j.aej.2019.05.005.

19.   Chien, N. M. (2015). Investigation of the capability of RANSE CFD for propeller calculation in practical use. Master's thesis, Université de Liège, Liège, Belgique, Matheo, from http:, accessed on 2015.

20.   Lungu, A. (2019). Hydrodynamic loads and wake dynamics of a propeller working in oblique flow.  IOP Conference Series: Materials Science and Engineering 2019, p. 012055.

21.   Guerrero, A. M., Gonzalez-Gutierrez, L. M., Remola, A. O., Diaz-Ojeda, H. R. (2018). On the influence of transition modeling and cross-flow effects on open water propeller simulations. Ocean Engineering, vol. 156, 2018, 101-119, DOI: 10.1016/j.oceaneng.2018.02.068.

22.   Eom, M. J., Jang, Y. H., Paik, K. J. (2021). A study on the propeller open water performance due to immersion depth and regular wave. Ocean Engineering, vol. 219, 2021, 108265, DOI:10.1016/j.oceaneng.2020.108265.

23.   Kim, K. W., Paik, K. J., Lee, J. H., Song, S. S., Altar, M., Demirel, Y. K. (2021). A study on the efficient numerical analysis for the prediction of full-scale propeller performance using CFD. Ocean Engineeringvol. 240, 2021, 109931, DOI:10.1016/j.oceaneng.2021.109931.

24.   Sánchez, A. R., Andrés, J., Rio, S. D., Quintana, E.C., Sanín-Villa, D. (2023). Numerical comparison of savonius turbine as  a rotor for gravitational vortex turbine with standard rotor. Journal of Applied Engineering Science, vol. 21, no. 1, 204-211, DOI:10.5937/jaes0-39847.

25.   Kamran, M., Nouri, N, M.(2021). Regression Modeling of surface piercing propeller performance based on trailing edge geometrical parameters using CFD method. Ocean Engineering, vol 259, September 2022, 111752, DOI. 10.1016/j.oceaneng.2022.111752

26.   Zhai, S., Jin, S., Chen, J., Liu, Z., Song, X.(2022).CFD-based multi-objective optimization of the duct for a rim-driven thruster. Ocean Engineering , vol 264, Nopember 2022, 112467, DOI. 10.1016/j.oceaneng.2022.112467.

27.   Machfudin, A., Dinariyana, A., Purnamasari, D., (2022). Analysis of uncertainties in open water test of B-series propeller at Indonesian Hydrodynamic Laboratory. IOP Conference Series: Earth and Environmental Science 2022, 012022.

28.   Delen, C,. Bal, S.(2023). A comprehensive experimental investigation of total drag and wave height of ONR Tumblehome, including uncertainty analysis. Ocean Engineering, vol 284, September 2023, 115232, DOI. 10.1016/j.oceaneng.2023.115232.

29.   Park, J., Lee, D., Park, G., Rhee, S, H., Seo, J., Yoon, H, K. (2022).Uncertainty assessment of outdoor free-running model tests for maneuverability analysis of a damaged surface combatant. Ocean Engineering , vol 252, May 2022, 111135, DOI. 10.1016/j.oceaneng.2022.111135.

30.   Dalheim, O, O., Steen, S.(2021). Uncertainty in the real-time estimation of ship speed through water. Ocean Engineering, vol 235, September 2021, 109423, DOI. 10.1016/j.oceaneng.2021.109423.

31.   Dubois, A., Leong, Z, Q., Quyen, H, D., Binns, J, R.(2019). Uncertainty estimation of a CFD-methodology for the performance analysis of a collective and cyclic pitch propeller. Applied Ocean Research, vol. 85, April 2019, 73-78, DOI. 10.1016/j.apor.2019.01.028.

32.   Aram, S., Mucha, P. (2023). Computational fluid dynamics analysis of different propeller models for a ship maneuvering in calm water. Ocean Engineering, vol. 276, 15 May 2023, 114226, DOI. 10.1016/j.oceaneng.2023.114226.

33.   Utama, I. K. A. P., Purnamasari, D., Suastika, I. K., Nurhadi, N., Thomas, G. A.(2021). Toward improvement of resistance testing reliability. Journal of Engineering and Technological Sciences, vol. 5, no.2, 210201, DOI:10.5614/j.eng.technol.sci.2021.53.2.1.

34.   Purnamasari, D., Utama, ,. I., Suastika, I. K., Thomas, G. (2020). Application of kalman filter to the uncertainty of model resistance data obtained from experiment. Journal of Engineering Science and Technology, vol. 15, no. 2, 1455-1465, from

35.   Purnamasari, D., Utama I.K, A. P., Suastika, I. K. (2020). Verification and validation of a resistance model for tanker 17.500 dwt. The Journal of Marine Science and Technology, vol. 28, no. 1, from

36.   Roache, P. J. (1998). Verification and validation in computational science and engineering,” Hermosa Publishing, Socorro New Mexico.