Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-45297 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1154 pages: 1139-1147

Asrori Asrori*
Department of Mechanical Engineering,State Polytechnic of Malang, Indonesia

Yuniarto Agus Winoko
Department of Mechanical Engineering,State Polytechnic of Malang, Indonesia

Subagiyo Subagiyo
Department of Mechanical Engineering,State Polytechnic of Malang, Indonesia

Pondi Udianto
Department of Mechanical Engineering,State Polytechnic of Malang, Indonesia

Irwan Heryanto Eryk
Department of Electrical Engineering,State Polytechnic of Malang, Indonesia

Solar energy has great potential for utilization as an unlimited and alternative renewable energy source that can be stored in batteries and used to drive the BLDC motor on electric bicycles. The purpose of this study was to determine the charging efficiency of a 100 Wp solar panel mounted on an electric bicycle. A solar power meter was used to measure the solar radiation absorbed by the photovoltaic (PV) module, while sensors were used to measure the current and voltage (DC) output from the solar panels. The sensor signals were then processed by a microcontroller and displayed on an LCD screen, as well as recorded by an SD card data logger. The characteristics of the charging voltage were compared with and without the PV module. The results showed that at a solar radiation of 1008 W/m², the maximum voltage and current achieved were 17.49 V and 3.37 A, respectively. Under these conditions, the battery charging efficiency of a 100 Wp solar panel was 58.94%. A one-hour test with an average solar radiation of 976.3 W/m² showed that integrating a 100 Wp PV module increased the energy stored in the e-bike battery by 33.33%. Therefore, the hybrid solar e-bike concept has the potential to improve the performance of electric vehicles in the future.

View article

The author is grateful for the financial support provided by Politeknik Negeri Malang through Grant No. SP DIPA-

1.      Susilo, S. H., Asrori A., Gumono G. (2022). Analysis of the efficiency of using the polycrystalline and amorphous PV module in the territory of Indonesia. Journal of Applied Engineering Science, vol. 20, no. 1, 239-245, DOI:10.5937/ jaes0-31607

2.      Asrori, A., Susilo, S. H. (2022). The development of Fresnel lens concentrators for solar water heaters: a case study in tropical climates. Eureka: Physics and Engineering, no. 3, pp. 3-10. DOI:10.21303/2461-4262.2022.002441

3.      Asrori, A., Sulistyono, S., Susilo, S.H., Yudiyanto, E. (2023). Design and simulation of performance fresnel solar cooker by single axis solar tracker. AIP Conference Proceedings, vol. 2531, 080008 (2023). DOI: 10.1063/5.0125941 

4.      Alktranee, M., Bencs, P. (2021). Applications of nanotechnology with hybrid photovoltaic/thermal systems: a reviewJournal of Applied Engineering Science,  vol. 19, no. 2292-306DOI: 10.5937/jaes0-28760

5.      Ziar, H., Manganiello, P., Isabella, O., Zeman, M. (2021). Photovoltatronics: intelligent PV-based devices for energy and information applications. Energy Environ. Sci, vol. 14, 106-12.  DOI: 10.1039/D0EE02491K

6.      Aghaei, M. R.,  Ebadi, H.,   de Oliveira, A. K. V., Vaezi, S., Eskandari, A., Castañón, J. M.  (2020). New concepts and applications of solar PV systems. In Photovoltaic Solar Energy Conversion Technologies: Applications and Environmental Impacts. Kaliamoorthi, P.K., United Kingdom: Brian Romer, 349-390. DOI: 10.1016/B978-0-12-819610-6.00011-9

7.      Alanazi, F. (2023). Electric vehicles: benefits, challenges, and potential solutions for wide spread adaptation. Appl. Sci., vol. 13, 6016. DOI10.3390/app13106016

8.      Sudjoko, C., SasongkoN. A., UtamiI., MaghfuriA. (2021). Utilization of electric vehicles as an energy alternative to reduce carbon emissionsIOP Conf. Series: Earth and Environmental Science 926 (2021) 012094, IOP Publishing, DOI:10.1088/1755-1315/926/1/012094

9.      Mishra, S., Dwivedi, G., Upadhyay, S., Chauhan, A. (2022). Modelling of standalone solar photovoltaic based electric bike charging. Materials Today: Proceedings, vol. 49, no. 2, 473-480. DOI: 10.1016/j.matpr.2021.02.738

10.   Ajiatmo, D., Robandi I.(2016). Modeling and simulation performance of photovoltaic system integration battery and supercapacitor paralellization of MPPT prototipe for solar vehicle. Engineering International Conference (EIC), AIP Conf. Proc, 1818. DOI: 10.1063/1.497994

11.   Adhisuwignjo, S., Siradjuddin, I., Rifa’i, M., Putri, R. I. (2017). Development of a solar-powered electric bicycle in bike sharing transportation system. IOP Conference Series: Earth and Environmental Science, vol. 70, 1-10. DOI: 10.1088/1755-1315/70/1/012025

12.   Abadi, I., Imron, C., Bachrowi, M. M., Fitriyanah, D. N. (2020). Design and implementation of battery charging system on solar tracker based stand alone PV using fuzzy modified particle swarm optimization. AIMS Energy, vol. 8, no. 1, 142-155. DOI: 10.3934/energy.2020.1.142

13.   Asrori, A., Rohman, F., Faizal, E., Karis, M. (2020). The design and performance investigation of solar e-bike using flexible solar panel by different battery charging controller. International Journal of Mechanical and Production Engineering Research and Developmentvol. 10, no. 3, 14431–14442. DOI: 10.24247/ijmperdjun20201374

14.   Sumbodo W., Wahyudi, Setiadi R., Kriswanto, Budiman Arif F. (2021). Design and fabrication of electric bike with sliding frame. Journal of Applied Engineering Science, vol. 19, no.4, 948 - 953. DOI: 10.5937/ jaes0-28957

15.   Gurung, A., Qiao, Q. (2018). Solar charging batteries: advances, challenges, and opportunities. Joule, vol. 2, no. 7, 1217-1230. DOI: 10.1016/j.joule.2018.04.006

16.   Fishman, E., Cherry, C. (2016). E-bikes in the mainstream: reviewing a decade of research. Transport Reviews, vol. 36, no. 1, 72-91. DOI: 10.1080/01441647.2015.1069907

17.   Apostolou, G., Reinders, A., Geurs, K. (2018). An overview of existing experiences with solar-powered e-bikes. Energies, vol. 11, 1-19. DOI: 10.3390/en11082129

18.   Shashank, R., Akshay, V., Ramesh, S., Nithin, B. G., Ravi, K. S., Krishna, S. A. M. (2021). Design and fabrication of solar powered bicycle. Journal of Physics: Conference Series, IOP Publishing, 2070. DOI: 10.1088/1742-6596/2070/1/012208

19.   Bai, L., Sze, N.N.,  Liu, P., Haggart , A.G. (2020). Effect of environmental awareness on electric bicycle users’ mode choices. Transportation Research Part D: Transport and Environment, vol. 82, 102320. DOI: 10.1016/j.trd.2020.102320

20.   Ling, Z., Cherry, C. R.,  MacArthur, J. H., Weiner, J. X. (2017). Differences of Cycling experiences and perceptions between e-bike and bicycle users in the United States. Sustainability, vol. 9, no.9, 1662,1-18. DOI: 10.3390/su9091662

21.   SP100-18M. PV module specifications, from accessed on 2023-09-07.

22.   Akila, A., Akila, E., Akila, S., Anu, K., Elzalet, J. (2019). Charging Station for E-Vehicle using Solar with IOT. 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 785-791. DOI: 10.1109/ICACCS.2019.8728391.

23.   Krivík, P. (2018). Methods of SoC determination of lead acid battery. Journal of Energy Storage, vol. 15, 191–195. DOI: 10.1016/j.est.2017.11.013

24.   Czerwiński, A., Wróbel, J., Lach, J., Wróbel, K., Podsadni, P. (2018). The charging-discharging behavior of the lead-acid cell with electrodes based on carbon matrix. Journal of Solid State Electrochemistry, vol. 22, 2703–2714. DOI: 10.1007/s10008-018-3981-4

25.   Kuznetsov, P.N., Abd Ali, L.M., Kuvshinov, V.V., Issa, H.A., Mohammed, H.J., Al-bairmani, A.G. (2020). Investigation of the losses of photovoltaic solar systems during operation under partial shadingJournal of Applied Engineering Sciencevol. 18, no. 3313-320. DOI:10.5937/jaes18-24460