Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-39847 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1065 pages: 204-211

Alejandro Ruiz Sánchez*
Deparment of Mechatronics Engineering, MATyER, Instituto Tecnológico Metropolitano, 050034, Medellín, Colombia

Jorge Andrés Sierra Del Rio*
Deparment of Mechatronics Engineering, MATyER, Instituto Tecnológico Metropolitano, 050034, Medellín, Colombia; Deparment of Mechanical, GIAM, Institución Universitaria Pascual Bravo, 050054, Medellín, Colombia

Edwin Correa Quintana
Deparment of Mechatronics Engineering, MATyER, Instituto Tecnológico Metropolitano, 050034, Medellín, Colombia

Daniel Sanín-Villa
Deparment of Mechanical, GIAM, Institución Universitaria Pascual Bravo, 050054, Medellín, Colombia

The generated kinetic energy of a water vortex can be transformed into electrical energy by a Gravitational Water Vortex Power Plant. Which is a new and green alternative for a conventional power plant that can induce/create a vortex without great civil construction. Previous studies focus their objective on tank design and vortex formation inside it (to study the fluid outlet velocity). However, the rotor design is a parameter that affects directly in turbine performance. The main purpose of this study is to compare numerically with the Ansys software the Savonius turbine as a Gravitational Vortex turbine rotor with the standard rotor (straight blades). The study showed that the straight-bladed rotor performed better with a generated torque of approximately 1.1 Nm, compared to 0.6 Nm generated by the Savonius. In conclusion, it was shown that the design of the rotor for the gravitational vortex turbine considerably affects its performance, where it can be increased or decreased by up to 30% difference.

View article

1.      F. Zotlöterer, “Gravitational Water Vortex Power Plants,” 2003. (accessed Mar. 04, 2018).

2.      H. feng LI, H. xun CHEN, Z. MA, and Y. ZHOU, “Formation and Influencing Factors of Free Surface Vortex in a Barrel with a Central Orifice at Bottom,” Journal of Hydrodynamics, pp. 238–244, 2009, doi: 10.1016/S1001-6058(08)60141-9.

3.      J. Sierra, A. Ruiz, A. Guevara, and A. Posada, “Review: gravitational vortex turbines as a renewable energy,” International Journal of Fluid Machinery and Systems, vol. 13, no. 4, 2020, doi: 10.5293/

4.      H. M. Shabara, O. B. Yaakob, Y. M. Ahmed, A. H. Elbatran, and M. S. M. Faddir, “CFD validation for efficient gravitational vortex pool system,” J Teknol, vol. 74, pp. 97–100, 2015, doi: 10.11113/jt.v74.4648.

5.      Y. Nishi, R. Suzuo, D. Sukemori, and T. Inagaki, “Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s performance,” Renew Energy, vol. 155, pp. 1103–1117, Aug. 2020, doi: 10.1016/J.RENENE.2020.03.186.

6.      M. H. Basri and A. Nasuki, “Water Discharge Management Based on Open and Closed Cylinders in the Gravitation Water Vortex Power Plant,” JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA), vol. 5, no. 1, pp. 22–36, Mar. 2021, doi: 10.21070/jeeeu.v5i1.1008.

7.      A. Ruiz Sánchez, J. Andrés, S. del Rio, and T. Pujol, “Numerical study and theoretical comparison of outlet hole geometry for a Gravitational Vortex Turbine,” Hal xx-xx Indonesian Journal of Science & Technology, vol. 4, no. 1, pp. xx–xx, 2019, doi: 10.17509/ijost.v4i1.xxxx.

8.      S. Mulligan, J. Casserly, and R. Sherlock, Experimental and numerical modelling of Free-Surface Turbulent Flows in Full Air-Core Water Vortices, vol. 1. Nice: Onziémes Journées de L’Hydraulique, 2014. doi: 10.1007/978-981-287-615-7_37.

9.      S. Dhakal et al., “Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant,” Renewable and Sustainable Energy Reviews, no. 48, pp. 662–669, 2015, doi: 10.1016/j.rser.2015.04.030.

10.   A. S. Saleem et al., “Parametric study of single-stage gravitational water vortex turbine with cylindrical basin,” Energy, vol. 200, p. 117464, Jun. 2020, doi: 10.1016/J.ENERGY.2020.117464.

11.   A. Ruiz Sánchez, J. A. Sierra-del Rio, A. J. Guevara Muñoz, and J. A. Posada-Montoya, “Numerical and Experimental Evaluation of Concave and Convex Designs for Gravitational Water Vortex Turbine,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 64, no. 1, pp. 160–172, 2019, doi: 2289-7879.

12.   S. R. Sreerag, C. K. Raveendran, and B. S. Jinshah, “Effect of outlet diameter on the performance of gravitational vortex turbine with conical basin,” Int J Sci Eng Res, vol. 7, no. 4, 2016.

13.   S. Joshi and A. K. Jha, “Computational and Experimental Study of the Effect of Solidity and Aspect Ratio of a Helical Turbine for Energy Generation in a Model Gravitational Water Vortex Power Plant,” Journal of Advanced College of Engineering and Management, vol. 6, pp. 213–219, Jul. 2021, doi: 10.3126/JACEM.V6I0.38360.

14.   T. C. Kueh, S. L. Beh, D. Rilling, and Y. Ooi, “Numerical Analysis of Water Vortex Formation for the Water Vortex Power Plant,” International Journal of Innovation, Management and Technology, vol. 5, no. 2, pp. 111–115, 2014, doi:

15.   L. Velásquez, A. Posada, and E. Chica, “Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology,” Renew Energy, vol. 187, pp. 508–521, Mar. 2022, doi: 10.1016/J.RENENE.2022.01.113.

16.   V. J. Alzamora Guzmán, J. A. Glasscock, and F. Whitehouse, “Design and construction of an off-grid gravitational vortex hydropower plant: A case study in rural Peru,” Sustainable Energy Technologies and Assessments, vol. 35, pp. 131–138, Oct. 2019, doi: 10.1016/J.SETA.2019.06.004.

17.   A. Ruiz, A. Guevara, J. A. Sierra, and A. Posada, “Numerical comparison of two runners for gravitational vortex turbine,” 2020.

18.    Wasserwirbel, “Genossenschaft Wasserwirbel Konzepte Schweiz,” 2017. (accessed Mar. 04, 2018).

19.   Green by Jonh;, “Vortex at Green School,” 2015. (accessed Apr. 10, 2018).

20.   Turbulent; “Turbulent micro hydropower,” 2019. (accessed Mar. 04, 2018).


22.     Wasserwirbelkraftwerk, “Wasserwirbelkraftwerk,” 2017.

23.   R. Dhakal et al., “Technical and economic prospects for the site implementation of a gravitational water vortex power plant in Nepal,” in IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 1001–1006. doi: 10.1109/ICRERA.2016.7884485.

24.   A. Laaraba and A. Khechekhouche, “Numerical simulation of natural convection in the air gap of a vertical flat plat thermal solar collector with partitions attached to its glazing,” Indonesian Journal of Science and Technology, vol. 3, no. 2, pp. 95–104, 2018, doi: 10.17509/ijost.v3i2.12753.

25.   A. Kumar and R. P. Saini, “Performance parameters of Savonius type hydrokinetic turbine – A Review,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 289–310, 2016, doi: 10.1016/j.rser.2016.06.005.

26.   Y. L. Castañeda Ceballos, M. Cardona Valencia, D. Hincapié Zuluaga, J. Sierra Del Rio, and S. Vélez García, “Influence of the Number of Blades in the Power Generated by a Michell Banki Turbine,” International Journal of Renewable Energy Research - IJRER, vol. 7, no. 4, pp. 1989–1997, 2017, doi:

27.   D. Beltran-Urango, J. L. Herrera-Díaz, J. A. Posada-Montoya, L. Castañeda, and J. A. Sierra-del Rio, “Generación de Energía Eléctrica Mediante Vórtices Gravitacionales,” in MEMORIAS EXPO TECNOLOGIAS 2016, Medellin, Antioquia, 2016, pp. 90–107.

28.   Du, Jiyun, Shen, Zhicheng, Yang, and Hongxing, “Effects of different block designs on the performance of inline cross-flow turbines in urban water mains,” Appl Energy, vol. 228, pp. 97–107, 2018, doi: 10.1016/j.apenergy.2018.06.079.

29.   Ansys Inc., “User Manual Ansys ICEM CFD 12.1,” vol. 0844682, no. November, pp. 724–746, 2009.

30.   R. S. S. Mulligan, J. Casserly, “Experimental and numerical modelling of Free-Surface Turbulent Flows in Full Air-Core Water Vortices,” Advances in Hydroinformatics, pp. 549–569, 2014.