Original Scientific Paper, Volume 20, Number 3, Year 2022, No 970, pp 626-633

Published: Sep 06, 2022

DOI: 10.5937/jaes0-35071

SEMI-INDUSTRIAL TESTS OF A PROTOTYPE OF A NEW GRINDING EQUIPMENT – A LABYRINTH DISINTEGRATOR

Aizhan Taskarina 1
Aizhan Taskarina
Affiliations
NPJSC «Toraighyrov University», Engineering faculty, Department of Metallurgy, Pavlodar,Kazakhstan
Yermaganbet Abdrakhmanov 1
Yermaganbet Abdrakhmanov
Affiliations
NPJSC «Toraighyrov University», Engineering faculty, Department of Metallurgy, Pavlodar,Kazakhstan
Maral Tussupbekova 1
Maral Tussupbekova
Affiliations
NPJSC «Toraighyrov University», Engineering faculty, Department of Metallurgy, Pavlodar,Kazakhstan
Renat Tyulyubayev 1
Renat Tyulyubayev
Affiliations
NPJSC «Toraighyrov University», Engineering faculty, Department of Metallurgy, Pavlodar,Kazakhstan
Irina Deigraf 1
Irina Deigraf
Affiliations
NPJSC «Toraighyrov University», Engineering faculty, Department of Metallurgy, Pavlodar,Kazakhstan
Iskakova Dinara 2
Iskakova Dinara
Affiliations
NPJSC «Toraighyrov University», Engineering faculty, Department of Machine building and standardization, Pavlodar, Kazakhstan
Kassenova Zhanar 3
Kassenova Zhanar
Affiliations
LLP «Institute of Coal Chemistry and Technology», Nur-Sultan, Kazakhstan
Khaimuldinova Altyngul 4
Khaimuldinova Altyngul
Affiliations
NPJSC «L.N. Gumilyov Eurasian National University»,Faculty of Transport and Energy, Department of «Standardization, Certification and Metrology»,Nur-Sultan, Kazakhstan
Open PDF

Abstract

The article provides a brief description of a prototype of a new grinding equipment – a labyrinth disintegrator, manufactured according to our developments, as well as the results of semi-industrial tests on various materials with different hardness and brittleness. A scheme for grinding the material and a dynamic scheme for moving the material through the labyrinths are presented. The results of sieve analyze of selected materials are presented, and granulometric curves for the distribution of particles of materials are constructed.

Keywords

disintegrator particle size distribution grinding sieve analysis electrodes TsS-1 (Sormite-1)

References

1. Rosenow, J., Cowart, R., Thomas, S., (2018) Market-based instruments for energy efficiency: a global review, vol.12, 5-th release, 1379-1398, DOI: 10.1007/s12053-018-9766-x.

2. Dudak, N., Taskarina, A., Kasenov, A., Itybaeva, G., Mussina, Z., Abishev, K., Mukanov, R. (2017) Hole Machining Based on Using an Incisive Built-Up Reamer. International Journal of Precision Engineering and Manufacturing, vol.18, Issue 10, 1425-1432, DOI: 10.1007/s12541- 017-0170-9.

3. Xu, Y., Zhang, B., Feng, G. (2022) Electromagnetic design and thermal analysis of module combined permanent magnet motor with wrapped type for mine ball mill. IET Electric Power Applications, 16(2),139–157, DOI: 10.1049/elp2.12141.

4. Gao, MW, Forssberg, E. Prediction of product size distributions for a stirred ball mill, vol.84, P 101-106, DOI: 10.1016/0032-5910(95)02990-J.

5. Romanovich, A.A., Romanovich, L.G., Chekhovskoy, E.I. (2018) Determination of rational parameters for process of grinding materials pre-crushed by pressure in ball mill, IOP Conference Series: Materials Science and Engineering,vol.327, Issue 4, DOI: 10.1088/1757-899X/327/4/042091.

6. Lucie, D., Pavel, K., Michaela, R., Martin, D., Karel, D., Melita, M., Ladislav, C. (2018) Optimization of molybdenum powder milling parameters.Obrabotkametallov-metal working and material science, № 3, 109-122, DOI: 10.17212/1994-6309-2018-20.3-109-122.

7. Yu, Y., Guo, PQ., Cao, YK., Wang, XW., Zhang, P., (2012) Development and Key Technologies of High-speed Grinding. Materials Science Forum,vol.723, 445-449, DOI: 10.4028/www.scientific.net/MSF.723.445.

8. Tukarambai M., Hemanth Varma M.S., Raju ChA.I. (2020) Batch grinding studies by a ball mill for hematite ore,10th International Conference of Materials Processing and Characterization, ICMPC 2020,vol.26, 825 - 832DOI: 10.1016/j.matpr.2019.12.425

9. Osnovymetallurgii. T. 7. Tekhnologicheskoeoborudovaniepredpriyatijcvetnojmetallurgii. – M. :Metallurgiya, 1975, 255-256.

10. Taskarina, A.ZH., Abdrahmanov, E.S., Tusupbekova, M.ZH., Tyulyubaev, R.A., Dejgraf, I.E. (2021) Konstrukciyanovogorazmalyvayushchegooborudovaniya.Mezhdunarodnayanauchno-prakticheskayakonfe-renciya «XIII Torajgyrovskiechteniya». – Pavlodar: Torajgyrovuniversitet, vol. 4, 241-245

11. Centrobezhnyjizmel'chitel' vstrechnogoudara RU 2150323C1, MPK V02S13/20, 10.06.2000.

12. Centrobezhnyjdiskovyjizmel'chitel' RU2739426C1, MPK V02S 7/00 V02S 13/2024.12.2020.

13. Kurytnik, I., Nussupbekov, B.R.,Khassenov, A.K.,Karabekova, D.Z.(2015) Disintegration of copper ores by electric pulses, vol.60, 2549-2551, DOI: 10.1515/amm-2015-0412

14. Semikopenko, I.A., Belyaev, D.A.(2021)Theoretical study of the kinetics of material destruction in a disintegrator with a preliminary grinding unit.Lecture notes in civil engineering, vol. 160, 161-167,DOI:10.1007/978-3-030-75182-1_22

15. Zheng Y., Kuznetsova M.M., Ved’ V.E., Aleksina A.A.(2016) Experimental studies of the energetically effective conditions of grinding of solids. Technical Physics, vol. 61,№ 5, 703-706, DOI:10.1134/S1063784216050273