Original Scientific Paper, Volume 19, Number 3, Year 2021, No 828, pp 564-569

Published: Sep 15, 2021

DOI: 10.5937/jaes0-28342

MICROPARTICLE SEPARATION IN A LINEAR PAUL TRAP

Roman Syrovatka 1
Roman Syrovatka
Affiliations
Joint Institute for HighTemperatures of the Russian Academy of Sciences (JIHT RAS), Moscow, Russia
Vladimir Filinov 1
Vladimir Filinov
Affiliations
Joint Institute for HighTemperatures of the Russian Academy of Sciences (JIHT RAS), Moscow, Russia
Leonid Vasilyak 1
Leonid Vasilyak
Affiliations
Joint Institute for HighTemperatures of the Russian Academy of Sciences (JIHT RAS), Moscow, Russia
Vladimir Pecherkin 1
Vladimir Pecherkin
Affiliations
Joint Institute for HighTemperatures of the Russian Academy of Sciences (JIHT RAS), Moscow, Russia
Lidiya Deputatova 1
Lidiya Deputatova
Affiliations
Joint Institute for HighTemperatures of the Russian Academy of Sciences (JIHT RAS), Moscow, Russia
Vladimir Vladimirov 1
Vladimir Vladimirov
Affiliations
Joint Institute for HighTemperatures of the Russian Academy of Sciences (JIHT RAS), Moscow, Russia
Open PDF

Abstract

We investigated the charged micron-sized particle separation by the alternating electric field in a linear quadrupole electrodynamic trap in open air under standard atmospheric temperature and pressure conditions (STP). In experiments we varied the amplitude of the alternating voltage supplying the electrodynamic trap and used a mixture of charged glassy carbon and alumina particles. The carried out numerical simulations and experimental results showed the mutual influence of the amplitude and frequency of the supplied to the trap electrode voltage on the separation of the different sizes particles. The typical particle charges in simulations were approximately equal to experimentally measured values obtained in a corona discharge.

Keywords

separation microparticles Paul trap charged particles

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (State Assignment No. 075-00892-20-01).

References

1. Vishnyakov, V., Dragan, G. (2003). Thermodynamic reasons of agglomeration of dust particles in the thermal dusty plasma. Condensed Matter Physics, vol. 6, 685-692.

2. Fortov, V.E., Ivlev, A.V., Khrapak, S.A., Khrapak, A.G., Morfill, G.E. (2004). Complex (dusty) plasmas: Current status, open issues, perspectives. Physics Reports, vol. 421, 1-103, DOI: 10.1016/j.physrep.2005.08.007

3. Smith, B., Hyde, T., Matthews, L., Reay, J., Cook, M., Schmoke, J. (2008). Phase Transitions in a Dusty Plasma with Two Distinct Particle Sizes. Advances in Space Research, vol. 41, no. 9, 1510-1513, DOI: 10.1016/j.asr.2008.01.006

4. Glushniova, A.V., Saveliev, A.S., Son, E.E., Tereshonok, D.V. (2014). Shock wave-boundary layer interaction on the non-adiabatic ramp surface. High Temperature, vol. 52, no. 2, 220-224, DOI: 10.1134/ S0018151X14020230

5. Privman, V. (2012). Colloids, Nanocrystals, and Surface Nanostructures of Uniform Size and Shape: Modeling of Nucleation and Growth in Solution Synthesis. Sau T.K., Rogach, A.L. (Eds.), ComplexShaped Metal Nanoparticles. John Wiley & Sons, Ltd, p. 239-268.

6. Singh, M., and Thaokar, R., Khan, A., Mayya, Y. (2018). Theoretical analysis of formation of many-drop arrays in a quadrupole electrodynamic balance. Physical Review E, vol. 98, 032202, DOI: 10.1103/PhysRevE.98.032202

7. Brouwers, B. (1996). Rotational particle separator: A new method for separating fine particles and mists from gases. Chemical Engineering & Technology, vol. 19, no. 1, 1-10, DOI: 10.1002/ceat.270190102

8. Gascoyne, P.R.C., Vykoukal, J. (2002). Particle separation by dielectrophoresis. Electrophoresis, vol. 23, no. 13, 1973-1983, DOI:10.1002/1522- 2683(200207)23:13<1973::AID-ELPS1973>3.0. CO;2-1

9. Xin, H., Bao, D., Zhong, F., Li, B. (2013). Photophoretic separation of particles using two tapered optical fibers. Laser Physics Letters, vol. 10, no. 3, 036004, DOI: 10.1088/1612-2011/10/3/036004

10. Jonas, A. and Zemanek, P. (2008). Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis, vol. 29, no. 24, 4813-4851, DOI: doi.org/10.1002/elps.200800484

11. Guldiken, R. Jo, M., Gallant, N., Demirci, U., and Zhe, J. (2012). Sheathless Size-Based Acoustic Particle Separation. Sensors, vol. 12, no. 1, 905-922, DOI: 10.3390/s120100905

12. Lapitsky, D.S. (2016). Particle separation by alternating electric fields of quadrupole type. Journal of Physics: Conference Series, vol. 774, 012178, DOI: 10.1088/1742-6596/774/1/012178

13. Libbrecht, K.G., Black, E.D. (2018). Improved microparticle electrodynamic ion traps for physics teaching. American Journal of Physics, vol. 86, no. 7, 539- 558, DOI: 10.1119/1.5034344

14. Mihalcea, B.M., Giurgiu, L.C., Stan, C., Visan, G.T., Ganciu, M., Filinov, V., Lapitsky, D., Deputatova, L., Syrovatka, R. (2016). Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions. Journal of Applied Physics, vol. 119, no. 11, 114303, DOI: 10.1063/1.4943933

15. Stoican, O.S., Mihalcea, B., Viorica Gheorghe (2001). Miniaturized microparticle trapping setup with variable frequency. Romanian Reports in Physics, vol. 53, no. 3-8, 275-280

16. Vasilyak, L., Vladimirov, V., Deputatova, L., Lapitsky, D., Molotkov, V., Pecherkin, V., Filinov, V., Fortov, V. (2013). Coulomb stable structures of charged dust particles in a dynamical trap at atmospheric pressure in air. New Journal of Physics, vol. 15, 043047, DOI: 10.1088/1367-2630/15/4/043047

17. Syrovatka, R., Filinov V., Vasilyak, L., Fortov, V., Deputatova, L., Vladimirov, V., Pecherkin V. (2019). Solitary density waves in the strongly coupled one component Coulomb particle structures as experimental support of the general versatility of the caustic theory. Physics Letters A, vol. 383, no. 16, 1942- 1945, DOI: 10.1016/j.physleta.2019.03.023

18. Syrovatka, R., Medvedev, Yu., Filinov, V., Vasilyak, L., Deputatova, L., Vladimirov, V., Pecherkin V. (2019). Solitary waves in a long structure of charged particles confined in the linear Paul trap. Physics Letters A, vol. 383, no. 4, 383-344, DOI: 10.1016/j. physleta.2018.10.044

19. Demyantseva, N.G., Kuzmin, S.M., Solunin, M.A., Solunin, S.A., Solunin, A.M. (2012). On the motion of charged particles in an alternating nonuniform electric field. Technical Physics, vol. 57, no. 11, 1465- 1477, DOI: 10.1134/S1063784212110096

20. Syrovatka, R., Deputatova, L., Filinov, V., Lapitsky, D., Pecherkin, V., Vasiyak, L., Vladimirov, V. (2016). Charge and Mass Measurements of a Dust Particle in the Linear Quadrupole Trap. Contributions to Plasma Physics, vol. 56, no. 5, 419-424, DOI: 10.1002/ ctpp.201500131

21. Lapitsky, D.S., Filinov, V.S., Deputatova, L.V., Vasilyak, L.M., Vladimirov, V.I., Pecherkin, V.Ya. (2013). Dust Particles Behavior in an Electrodynamic Trap. Contributions to Plasma Physics, vol. 53, no. 4-5, 450-456, DOI: 10.1002/ctpp.201300011

22. Guan, W., Joseph, S., Park, J.H., Krstic, P.S., Reed, M.A. (2011). Paul trapping of charged particles in aqueous solution. Proceedings of the National Academy of Sciences, vol. 108, no. 23, 9326-9330, DOI: 10.1073/pnas.1100977108

23. Park, J.H., Krstic, P.S. (2012). Park J. H., Krstić P. S. Thermal noise in aqueous quadrupole micro-and nano-traps. Nanoscale research letters, vol. 7, no. 1, 1-13, DOI: 10.1186/1556-276x-7-156