DOI: 10.5937/jaes0-35413
This is an open access article distributed under the CC BY 4.0

Volume 20 article 964 pages: 582-589
The Gaussian or normal distribution is vital in most areas of industrial engineering, including simulation. For example, the inverse of the Gaussian cumulative density function is used in all simulation software (e.g., ARENA, ProModel) to generate a group of random numbers that fit Gaussian distribution. It is also used to estimate the life expectancy of new devices. However, the Gaussian distribution that is truncated from the left side is not defined in any simulation software. Estimation of the expected life of used devices needs left-sided truncated Gaussian distribution. Additionally, very few works examine generating random numbers from left-sided truncated Gaussian distribution. A high accuracy mathematical-based approximation to the left-sided truncated Gaussian cumulative density function is proposed in the current work. Our approximation is built based on Polya’s approximation of the Gaussian cumulative density function. The current model is beneficial to approximate the inverse of the left-sided truncated Gaussian cumulative density function to generate random variates, which is necessary for simulation applications.
1. Tunno, B. J., Michanowicz, D. R., Shmool, J. L., Kinnee, E., Cambal, L., Tripathy, S., Gillooly, S., Roper, C., Chubb, L., Clougherty, J. E. (2016). Spatial variation in inversion-focused vs 24-h integrated samples of PM2. 5 and black carbon across Pittsburgh, PA. Journal of exposure science & environmental epidemiology, vol. 26, no. 4, 365-376. https://doi.org/10.1038/jes.2015.14
2. Fischer, M., & Jakob, K. (2016). pTAS distributions with application to risk management. Journal of Statistical Distributions and Applications, vol. 3, no. 1, 1-18. https://doi.org/10.1186/s40488-016-0049-9
3. Cha, J., Cho, B. R. (2015). Classical statistical inference extended to truncated populations for continuous process improvement: test statistics, P‐values, and confidence intervals. Quality and Reliability Engineering International, vol. 31, no. 8, 1807-1824. https://doi.org/10.1002/qre.1719
4. Ross, S. R. (2014). Introduction to probability models, 11th Ed. Elsevier, Oxford, UK
5. Zhang, X., Shen, C., Cheng, P., Li, Q. (2017). An image-processing based method for the measurement of the film thickness of a swirl atomizer. Journal of Visualization, vol. 20, no. 1, 1-5. https://doi.org/10.1007/s12650-016-0370-x
6. Harrison, D., Sutton, D., Carvalho, P., Hobson, M. (2015). Validation of Bayesian posterior distributions using a multidimensional Kolmogorov–Smirnov test. Monthly Notices of the Royal Astronomical Society, vol. 451, no. 3, 2610-2624. https://doi.org/10.1093/mnras/stv1110
7. Mahajan, A., Tatikonda, S. (2015). An algorithmic approach to identify irrelevant information in sequential teams. Automatica, vol. 61, 178-191. https://doi.org/10.1016/j.automatica.2015.08.002
8. Davidson, R. (2015). Computing, the bootstrap and economics. Canadian Journal of Economics/Revue canadienne d'économique, vol. 48, no. 4, 1195-1214. https://doi.org/10.1111/caje.12158
9. Zuverink, A., (2015) Surface roughness scattering of electrons in bulk mosfets. Thesis Submitted to the University of Wisconsin-Madison, Madision, USA
10. Fang, X., Li, J., Wong, W. K., Fu, B. (2016). Detecting the violation of variance homogeneity in mixed models. Statistical methods in medical research, vol. 25, no. 6, 2506 2520. http://dx.doi.org/10.1177/0962280214526194
11. Dutta, S., Misra, I. S. (2014). Error Analysis of 2-tierM-ary Star QAM Modulation in Shadowed Fading Channels. International Journal of Computer Applications, vol. 88, no. 1, 9-16.
12. Büyükkaracığan, N. (2014). Determining the best fitting distributions for minimum flows of streams in Gediz Basin. International Journal of Civil and Environmental Engineering, vol. 8, no. 6, 417-422. https://doi.org/10.5281/zenodo.1093263
13. Moheghi, H., Niaki, S. T. A., Bootaki, B., Bakhshesh, D. (2017). On the effect of inducted negative correlation rate for beta acceptance–rejection algorithms. Communications in Statistics-Simulation and Computation, vol. 46, no. 3, 2152-2167. https://doi.org/10.1080/03610918.2015.1039128
14. Hörmann, W., Leydold, J. (2014). Generating generalized inverse Gaussian random variates. Statistics and Computing, vol. 24, no. 4, 547-557. https://doi.org/10.1007/s11222-013-9387-3
15. Lijoi, A., Prünster, I. (2014). Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James. Statistical methods & applications, vol. 23, no. 3, 371-377. https://doi.org/10.1007/s10260-014-0269-4
16. Zhu, H., Dick, J. (2014). Discrepancy bounds for deterministic acceptance-rejection samplers. Electronic Journal of Statistics, vol. 8, no. 1, 678-707. https://doi.org/10.1214/14-EJS898
17. Xi, B., Tan, K. M., Liu, C. (2013). Logarithmic transformation-based gamma random number generators. Journal of Statistical Software, vol. 55, 1-17. https://doi.org/10.18637/jss.v055.i04
18. Hung, Y. C., Chen, W. C. (2017). Simulation of some multivariate distributions related to the Dirichlet distribution with application to Monte Carlo simulations. Communications in Statistics-Simulation and Computation, vol. 46, no. 6, 4281-4296. https://doi.org/10.1080/03610918.2015.1115066
19. Romano, P. K. (2015). An algorithm for generating random variates from the Madland–Nix fission energy spectrum. Computer Physics Communications, vol. 187, 152-155. https://doi.org/10.1016/j.cpc.2014.11.001
20. Favaro, S., Nipoti, B., Teh, Y. W. (2015). Random variate generation for Laguerre-type exponentially tilted $\alpha $-stable distributions. Electronic Journal of Statistics, 9, no. 1, 1230-1242. http://doi.org/10.1214/15-EJS1033
21. Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S., Cho, B. R. (2009). A logistic approximation to the cumulative normal distribution. Journal of Industrial Engineering and Management, vol. 2, no. 1, 114-127. http://dx.doi.org/10.3926/jiem..v2n1.p114-127
22. Jawitz, J. W. (2004). Moments of truncated continuous univariate distributions. Advances in water resources, vol. 27, no. 3, 269-281. https://doi.org/10.1016/j.advwatres.2003.12.002
23. Khasawneh, M. T., Bowling, S. R., Kaewkuekool, S., Cho, B. R. (2004). Tables of a truncated standard normal distribution: A singly truncated case. Quality Engineering, vol. 17, no. 1, 33-50. https://doi.org/10.1081/QEN-200028681
24. Khasawneh, M. T., Bowling, S. R., Kaewkuekool, S., Cho, B. R. (2005). Tables of a truncated standard normal distribution: A doubly truncated case. Quality Engineering, vol. 17, no. 2, 227-241. https://doi.org/10.1081/QEN-200057321
25. Kim, T. M., Takayama, T. (2003). Computational improvement for expected sliding distance of a caisson-type breakwater by introduction of a doubly-truncated normal distribution. Coastal Engineering Journal, vol. 45, no. 3, 387-419. https://doi.org/10.1142/S0578563403000816
26. Makarov, Y. V., Loutan, C., Ma, J., De Mello, P. (2009). Operational impacts of wind generation on California power systems. IEEE transactions on power systems, vol. 24, no. 2, 1039-1050. https://doi.org/10.1109/TPWRS.2009.2016364
27. Cha, J., Cho, B. R., Sharp, J. L. (2013). Rethinking the truncated normal distribution. International Journal of Experimental Design and Process Optimisation, vol. 3, no. 4, 327-363.
28. Hamasha, M., Al, H., Hamasha, S., Ahmed, A. (2021). A mathematical approximation to left-sided truncated normal distribution based on Hart's model. Journal of Applied Engineering Science, vol. 19, no. 4, 1049-1055. https://doi.org/10.5937/jaes0-29895
29. Burkardt, J. (2014). The truncated normal distribution. Department of Scientific Computing Website, Florida State University, 1, 35.