Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-44066 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1148 pages: 1083-1093

Ekha Yogafanny
Civil and Environmental Engineering Department, Universitas Gadjah Mada, Yogyakarta, Indonesia; Environmental Engineering Department, Universitas Pembangunan Nasional Veteran Yogyakarta, Indonesia

Radianta Triatmadja*
Civil and Environmental Engineering Department, Universitas Gadjah Mada, Yogyakarta, Indonesia

Fatchan Nurrochmad
Civil and Environmental Engineering Department, Universitas Gadjah Mada, Yogyakarta, Indonesia

Intan Supraba
Civil and Environmental Engineering Department, Universitas Gadjah Mada, Yogyakarta, Indonesia

The modified pervious concrete and cement mortar, known as pervious cement mortar (PCM), is designed with a specific composition to create pores. The coarse aggregate is removed to form smaller pore sizes. PCM acts as a water filter, needing higher permeability than cement mortar but less than pervious concrete. Its pores drain water while trapping impurities. This study compares the effects of sand-to-cement ratio (S/C), specimen thickness, and age on permeability and porosity. It also contrasts PCM's permeability coefficient determined by constant head and falling head methods. Numerous studies compare permeability coefficients in pervious concrete using these methods, but not for finer aggregate cement-based composite materials like pervious cement mortar. PCM uses fine aggregate (0.6 – 0.85 mm) at 3, 5, and 10 cm thickness with S/C ratios of 4 and 5. Findings show that S/C 5 specimens have significantly higher porosity than S/C 4. The S/C ratios notably impact permeability; the higher ratio means the higher permeability. Permeability coefficients for S/C 4 ranging from 0.006 – 0.075 cm/s, while S/C 5 ranging from 0.010 to 0.147 cm/s. The relationship between the permeability coefficient between the constant head and falling head methods at the age of 90 days specimen are Kc = 1.0516 Kf (S/C 4.2) and Kc = 0.9325 Kf (S/C 5.2). According to these findings, finer aggregates result in a significantly smaller permeability, to the extent that the constant head method is more reliable compared to the falling head method.

View article

The authors gratefully acknowledge the funding support provided by The Indonesia Endowment Fund for Education/ LPDP ( awarded to EY (Grant no: KET 248/LPDP.4/2021). The authors thank to M. Fajar Purnomo, Gholam Zaki Dzamiri, and Roseva Rahmawati Maha for assistance in the laboratory. Any use of product names is solely for descriptive purposes and does not imply company endorsement. The authors sincerely thank the Hydraulics Laboratory, Civil and Environmental Engineering Department, Gadjah Mada University, Indonesia. We are also indebted to the reviewers of this paper for their invaluable comments and suggestions.

1.      Zhang, Y., Li, H., Abdelhady, A., and Yang, J. (2020). Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methods. Constr. Build. Mater., vol. 263, p. 120614, DOI: 10.1016/j.conbuildmat.2020.120614.

2.      Seifeddine, K., Amziane, S., and Toussaint, E. (2023). State of the art on the hydraulic properties of pervious concrete. Road Mater. Pavement, DOI: 10.1080/14680629.2022.2164332.

3.      M. K. Ali and Q. M. S. Kareem. (2014). Experimental study on mechanical and hydrological properties of pervious concrete with different water cement ratio. Int. J. Enhanc. Res. Sci. Technol. Eng., vol. 3, no. 1, 107 – 113.

4.      AlShareedah, O and Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. J. Clean. Prod., vol. 288, p. 125095, DOI:10.1016/j.jclepro.2020.125095.

5.      Ibrahim, A., Mahmoud, E., Yamin, M., and Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Constr. Build. Mater., vol. 50, 524–529, DOI:10.1016/j.conbuildmat.2013.09.022.

6.      American Concrete Institute. (2010). ACI 522R: Report on Pervious Concrete.

7.      Singh, A., Sampath, P. V., and Biligiri, K. P. (2020). A review of sustainable pervious concrete systems: Emphasis on clogging, material characterization, and environmental aspects. Constr. Build. Mater., vol. 261, p. 120491, DOI:10.1016/j.conbuildmat.2020.120491.

8.      Elango, K. S. and Revathi, V. (2019). Infiltration and clogging characteristics of pervious concrete. Asian J. Civ. Eng., vol. 20, no. 8, 1119–1127, DOI:10.1007/s42107-019-00170-w.

9.      Taghizadeh, M. M., Torabian, A., Borghei, M., and Hassani, A. H. (2007). A study of feasibility for water purification using vertical porous concrete filter. Int. J. Environ. Sci. Technol., vol. 4, no. 4, 505–512, DOI:10.1007/BF03325987.

10.   Maadji, R., Triatmadja, R., Nurrochmad, F., and Sunjoto. (2017). The Concrete Filter Mix Design for Water Treatment, in Proceedings of the Second IAHS Panta Rhei International Conference on Water System Knowledge Innovation and its Practices in Developing Countries.

11.   Kamulyan, B., Nurrochmad, F., Triatmadja, R., and Sunjoto. (2011). The head loss development and turbidity removal of the filtration using concrete sand filter with various cement to sand ratio. in The 4th ASEAN Environmental Engineering Conference, 2011.

12.   Yogafanny, E., Triatmadja, R., Nurrochmad, F., and Supraba, I. (2023). The leaching behavior of pervious mortar used as water filter in rural areas. Int. J. GEOMATE, vol. 25, no. 110, 159–166, DOI:10.21660/2023.110.3942.

13.   Chen, X., Niu, Z., Zhang, H., Lu, M., Lu, Y., Zhou, M., and Li, B. (2020). Design of a chitosan modifying alkali-activated slag pervious concrete with the function of water purification. Constr. Build. Mater., vol. 251, p. 118979, DOI:10.1016/j.conbuildmat.2020.118979.

14.   Park, S. B. and Tia, M. (2004). An experimental study on the water-purification properties of porous concrete. Cem. Concr. Res., vol. 34, 177–184, DOI:10.1016/S0008-8846(03)00223-0.

15.   Pereira da Costa, F. B., Haselbach, L. M., and da Silva Filho, L. C. P. (2021). Pervious concrete for desired porosity: Influence of w/c ratio and a rheology-modifying admixture. Constr. Build. Mater., vol. 268, p. 121084, DOI:10.1016/j.conbuildmat.2020.121084.

16.   Huang, J., Zhang, Y., Sun, Y., Ren, J., Zhao, Z., and Zhang, J. (2021). Evaluation of pore size distribution and permeability reduction behavior in pervious concrete. Constr. Build. Mater., vol. 290, p. 123228, DOI:10.1016/j.conbuildmat.2021.123228.

17.   [Rao, Y., Ding, Y., Sarmah, A. K., Liu, D., and Pan, B. (2020). Vertical distribution of pore-aggregate-cement paste in statically compacted pervious concrete. Constr. Build. Mater., vol. 237, no. 17605, 1–11, DOI:10.1016/j.conbuildmat.2019.117605.

18.   Chandrappa, A. K. and Biligiri, K. P. (2016). Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach. Constr. Build. Mater., vol. 123, 627–637, DOI:10.1016/j.conbuildmat.2016.07.035.

19.   Yang, H., Liu, R., Zheng, Z., Liu, H., Gao, Y., and Liu, Y. (2018). Experimental Study on Permeability of Concrete. IOP Conf. Ser. Earth Environ. Sci., vol. 108, no. 022067, 1–6, DOI:10.1088/1755-1315/108/2/022067.

20.   Budhu, M. (2015). Soil Mechanics Fundamentals. John Wiley & Sons, United Kingdom, p. 108-112.

21.   Sandoval, G. F. B., Galobardes, I., Teixeira, R. S., and Toralles, B. M. (2017). Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes. Case Stud. Constr. Mater., vol. 7, pp. 317–328, DOI: 10.1016/j.cscm.2017.09.001.

22.   Qin, Y., Yang, H., Deng, Z., and He, J. (2015). Water permeability of pervious concrete is dependent on the applied pressure and testing methods,” Adv. Mater. Sci. Eng., vol. 2015 , pp. 1–7, DOI:10.1155/2015/404136.

23.   Malviya, S., Baig, A., and Rajawat, A. S. (2019). Replacement of Sand in Mortar. Int. Res. J. Eng. Technol., vol. 6, no. 10, 226–232.

24.   Akkaya, A and Çağatay, İ. H. (2021). Investigation of the density, porosity, and permeability properties of pervious concrete with different methods. Constr. Build. Mater., vol. 294, DOI:10.1016/j.conbuildmat.2021.123539.

25.   Abdelhady, A., Hui, L., and Zhang, H. (2021). Comprehensive study to accurately predict the water permeability of pervious concrete using constant head method. Constr. Build. Mater., vol. 308, no. 125046, DOI:10.1016/j.conbuildmat.2021.125046.

26.   Joshi, T. and Dave, U. (2022). Development of Mixture Design of Pervious Concrete with Changing Coarse Aggregate Size. J. Inst. Eng. Ser. A, vol. 103, no. 3, 733–745, DOI:10.1007/s40030-022-00660-2.

27.   Mulu, A., Jacob, P., and Dwarakish, G. S. (2022). Hydraulic Performance of Pervious Concrete Based on Small Size Aggregates. Adv. Mater. Sci. Eng., vol. 2022, 1-12, DOI:10.1155/2022/2973255.

28.   Ferić, K., Sathish Kumar, V., Romić, A., and Gotovac, H. (2023). Effect of Aggregate Size and Compaction on the Strength and Hydraulic Properties of Pervious Concrete. Sustain., vol. 15, no. 2, DOI:10.3390/su15021146.

29.   Wijekoon, S. H., Shajeefpiranath, T., Subramaniam, D. N., and Sathiparan, N. (2023). A Mathematical Model to Predict the Porosity and Compressive Strength of Pervious Concrete based on The Aggregate Size, Aggregate-to-Cement Ratio and Compaction Effort. Asian J. Civ. Eng., DOI:

30.   Vijayalakshmi, R. (2021). Recent Studies on the Properties of Pervious Concrete; A Sustainable Solution for Pavements and Water Treatment. Civ. Environ. Eng. Reports, vol. 31, no. 3, 54–84, DOI:10.2478/ceer-2021-0034.

31.   Alighardashi, A., Mehrani, M. J., Fakhravar, N., and Ramezanianpour, A. M. (2019). Material design and characterization of pervious concrete reactive barrier containing nano-silica and fine pumice aggregate,” Asian J. Civ. Eng., vol. 20, no. 1, 49–56, DOI: 10.1007/s42107-018-0087-3.

32.   Lederle, R., Shepard, T., and De La Vega Meza, V. (2020). Comparison of methods for measuring infiltration rate of pervious concrete,” Constr. Build. Mater., vol. 244, p. 118339, DOI:10.1016/j.conbuildmat.2020.118339.

33.   Skutnik, Z., Sobolewski, M., and Koda, E. (2020). An experimental assessment of the water permeability of concrete with a superplasticizer and admixtures. Materials (Basel)., vol. 13, no. 24, 1–16, DOI:10.3390/ma13245624.

34.   Phung, Q. T., Maes, N., De Schutter, G., Jacques, D., and Ye, G. (2013). Determination of water permeability of cementitious materials using a controlled constant flow method. Constr. Build. Mater., vol. 47, pp. 1488–1496, DOI:10.1016/j.conbuildmat.2013.06.074.

35.   Martin, W. D., Kaye, N. B., and Putman, B. J. (2014). Impact of vertical porosity distribution on the permeability of pervious concrete. Constr. Build. Mater., vol. 59, pp. 78–84, DOI:10.1016/j.conbuildmat.2014.02.034.

36.   Jagadeesh, A., Ong, G. P., and Su, Y. (2018). Porosity and Permeability Evaluation of Pervious Concrete Using Three-Dimensional X-Ray Computed. in 4th International Conference on Transport Infrastructure 37th Annual Southern African Transport Conference, July, 69–79.